BLUEFISH Functional Specification

14 July 1978
Art Lim

Section 1

Section 2

Section 3

Section 4

Section 5

Sections 6

Appendix A

Table of Contents

PDP 11/68 Overview

Introduction

11/68 Internal I/O Page Address Register
Index

PDP 11/68 Processor

Base Processor Instructions

Table 2.1 Addressing Modes

Table 2.2 sSingle Operand Instructions
Table 2.3 Double Operand Instructions
Table 2.4 Processor Control Instructions
Table 2.5 Miscellaneous Instructions
Table 2.6 Condition Code Operators

Table 2.7 Programming Difference List

Processor Control Registers
Aborts, Traps, Interrupts
Memory Management
Cache/Memory Operations

Floating Point Processor/Instructions

Memory System
To be specified

Console
Software Issues

Midrange Systems Console Functional
Specification

PROJECT BLUEFISH (PDP 11/68)

1.0 Introduction

BLUEFISH represents the new high end of the PDP-11 architecture
offering performance in excess of the 11/74 (target at 1.5 times
11/74 base processor) at a significantly reduced cost (% trans-
fer cost of 11/74). Multiprocessor hooks will be incorporated
within the hardware to permit the multiprocessor multi-port
memory configuration of the 11/74.

Full 11/74 functionality will be provided with the exception of
the following:

System I/D Register 17 777 764
System Size Register 17 777 760 —-- 17 777 762
Trap functions within Memory Management

The PDP 11/68 system configuration is illustrated in figure #1.
Communication between functional units of the system is pro-
vided through a high bandwidth synchronous backplane interconnect
called the PPBI.

Mass bus peripherals will communicate with primary memory through
RH68 controllers compatible with RH70 controllers of the 11/70.

The Unibus mapping functions, Unibus arbitration as well as
translation of signals from Unibus to PPBI is provided by the
Unibus Controller (UBC).

BLUEFISH will provide the Commercial Instruction (DEC STD 168
Revision B) and both integral and accelerated versions of floating
point containing the full FP1l1l instruction set. The cache buffer
provides forQ@ bytes of data storage configured in set size 2
and block size 2.

This document has been assembled as a preliminary software ref-
erence guide for the Bluefish processor. 1It's purpose is to
summarize the software compatibilities, point out any instructions
and in general to eliminate any confusion that may arise in the
upgrade of DEC operating systems and diagnostics.

Please review the contents of this document primarily focussing
on the format of control and status registers that reflect pro-
cessor specific functions, trap vectors, and priorities as well
as the difference list which identifies the differences in the
implementation of functions by different processes in the PDP-11
family. (Table 2-7).

1.1-1 11/68

Address

1.2

17 777 776

17
17
17
17
17
17
17

17

17

17

17
17
17
17

17
17

17
17
17
17

17

777
777
777
777
777
777
777
777

7717

777

777
777
777
777

777
777

777
777
777
777
772

774
772
774
766
764
762
769

754

752

7598

746
744
742
749

696
688

576
574
572
574
576

Register

Processor Status Word
Stack Limit

Program Interrupt Request
Micro break

CPU Error

System I/D

Upper System Size

Lower System Size.

Cache/Memory Maintenance
Register ¢

Cache/Memory Maintenance
Register 1

Cache/Memory Maintenance
Register 2

Cache Control

'Cache/Memory System Error

High Error Address

Low Error Address

User I/D PAR/PDR

Memory Management Register 2
Memory Management Register 1
Memory Management Register 0
Console and Display

Memory Management Register 3

11/68 Internal I/O Page Address Register Index

Section Described
Program Control
Program Control

Program Control

Program Control
Not Implemented
Not Implemented

Not Implemented

Cache/Memory

Cache/Memory

Cache/Memory

Cache/Memory
Cache/Memory
Cache/Memory

Cache/Memory
Memory Management

Memory Management
Memory Management
Memory Management
Console

Memory Management

11/68

Address

17 772 376
17 772 389

17 772 276

17 772 289

Register

Kernal I/D PAR/PDR

Supervisor I/D PAR/PDR

Section Described

Memory Management

- Memory Management

11/68

W7) //ga
/PROCLESSCOR

ALNVLOLEL FROCESSOR LACALANE N7ERCOVAECT

£Lece
MER

MEHNRY | MRy RAEB | -oo |AKVESE
ARRAY | |ARR4Y
f 0 *e # 7

Fbeee V44 F oot Y
WMASSBYS — MASSBYS
DEWCES — DEVICES

PDP11/68 SYSTEM CONFIGURATION

ON/BYS
CATHL

MAP

STEN7

Section 2 PDP 11/68 Processor
2.1 Base Processor Instructions
o L) (TR 3
¥ T L 1 T LB L L : L 1
MODE ! @ fin
1 1] 'R s i L i 1 1
15) 4 3 2

Y Y
0P CODE DESTINATION ADDRESS FIELD

® *SPECIFIES DIRECT OR INDIRECT ADDRESS

«a 2 SPECIFIES HOW REGISTER WILL BE USED
auw « SPECIFIES ONE OF 8 GENERAL PURPOSE REGISTERS

{a)

e

LL1J

MODE
"

1

b~ = -

@

@

1"

10

9

3

2

- A, V)
Y Y
SOURCE ADDRESS FIELD DESTINATION AODRESS FIELD

» *ORECT/DEFERRED B1T FOR SOURCE AND DESTINATION ADDRESS
ans SPECIFIES HOW SELECTED REGISTERS ARE TO BE USED
aansSPECIFIES A GENERAL REGISTER

d)

n-1227

Figure 2-1 Addressing Mode Instruction Formats

2.1-1

Mode

Binary
Code

000 -

olo

1lo0

110

Addressing Modes

Assembler
Name Syntax*

Dirsct Modes

Register Rn
Autoincrement (Rn)+
Autodecrement -{Rn)
Index X (Rn)
2.1.2

Function

Register contains operand.
Operations performed on reg-
isters in byte mode refer to
the low order byte (bits <7:0>)
of the register.

Register contains address of
operand. Register contents
incremented after reference.
Registers 6 (SP) and 7 (PC) are
always incremented by 2 after
reference. R@ - R5 are incre-~
mented by 2 for word and by 1
for byte instructions.

Register contents decremented
before reference. Register
contains address of operand.
Registers 6 (SP) and 7 (»C)

are always decremented by 2 be-
fore reference. R@ - RS are
decremented by 2 for word. and
by 1 for byte instructions.

Value X (stored in a word fol-
lowing the instruction) is ad-
ded to (Rn) to produce address
of operand. Neither X nor (Rn)
is modified.

11/68

Addressing Modes (con't)

Deferred Modes

001 Register @Rn or (Rn) Register contains the address
Deferred of the operand.

011 Autoincrement @(Rn)+ Register is first used as a
Deferred pointer to a word containing

the address of the operand,
then incremented (always by
two, even for byte instructions).

lol Autodecrement @-(Rrn) * Register is decremented (always
Deferred ~ by two, even for byte instruc-
tions) and then used as a
pointer to a word containing
the address of the operand.

111 Index Deferred @X (Rn) Value X (stored in the memory
word following the instruction)
and (Rn) are added and the sum
is used as a pointer to a word
containing the address of the
operand. Neither X nor (Rn)
is modified.

2.1-3
11/68

Table 2-1 -Addressing Modes {cont)

Binary) Assembler
Mode Code Name Syntax* Function
PC Addressing

2 010 Immediate #n Opérand follows instruction.

3 o1 Absolute @FA Absolute address follows
instruction.

6 110 Relative A Address of A, relative to the
instruction, follows the instruction.

7 i Relative Deferred | @A Address of location containing

address of A, relative to the instruc-
tion, follows the instruction..

* Rn = Rcgister .
X.n, A = pext program counter (PC) word (constant)

PDP 11/68 INSTRUCTIONS

PDP 11/68 instructions can be divided into five groups:

1. Single-Operand Instructions (shifts, multiple precision
instructions, rotations)

2. Double-Operand Instructions (arithmetic and logical
instructions)

3. Pi:ogram Control Instructions (branches, subroutines,
traps)

4. Operate Group Instructions (processor control operations)

5. Condition Code Operators (processor status word bit
instructions) "

Tables 2-2 through 2-6 list each
instructions for the respective i

instruction, including byte
nstruction groups.

Figure

2-2 shows the six different instruction formats of the
instruction set, and the individual instructions in each format.

2.1-4

11/68

S-1°¢

Table 2.2 Single Operand Instructions

Dsetaf (dst)is 177777 and

Cis

Mnemonic OP Code Operation Condition Codes Description

CLR 0050DD* 'ldsx,- 0 N. cleared Contents of specitied destination are replaced with zeroes.
CLRB 1050DD Z. set
Clear V: cleared

C. cleared
CoM 0051DD (dst) = tdst) N: setif most signiticant Repiaces the contents of the destination address by ttei
COMB 1051DD bit of result is 0 logical complement (each bit equal to 0 set and cach bit equal
Complement Z: setfresult is O 1o 1 cleured).

V: cleared

C: set
INC 0052DD (dst) — (dst) + | Noosetif result is less than 0 Add | to the contents of the destination.

~ INCB 1052DD Z: setif result is 0
Increment Vi osenaf (dst) was 077777
. C: not affected

DEC 00s3DD (dst) ~ (dstr -} N: set if result is less than 0 Subtract | from the contents of the destination.
DECB 1053DD Z: setil result is O
Decrement Vo setif (dst) was 100000

C: not affected
NEG 0054DD (dst) +~ -(dst) N set it result s less than 0 Replaces the contents of the destination address by its 2's com-
NEGB 1054DD Z: setuf result 150 plement. Note that 100000 is replaced by itself.
Negate V: setif result is 100000

C. cleared if result is 0
ADC 0055DD (dst) ~ (dst) + C N: set il result is less than O Adds the contents of the C-bit nto the destination. This permits
ADCB 1055DD Z. seritresultas O the carry 1rom the addition of the low-order words, by tes to be
Add Carry Viosetif(dst) s 077777 and | carried into the high-order results.

Cis |

9-1°¢

Table 2-2 Single Operand Instructions (Cont)

Mnemonic OP Code Operation Condition Codes Description
SBC 0056DD {dst) « (dst) C N: set if result is less than O Subtracts the contents of the C-bit from the destination. This
SBCB 1056DD Z: setif result is 0 permits the carry from the subtraction of the low order words/
Subtract Carry V: setif (dst) was 100000 bytes to be subtracted from ihe high-order part of the result.
C: cleared if (dst) is 0 and C ’
i5 i
TST 0057DD (dst) = (dst) N oset il result is less than 0 Sets the condition codes N and Z according to the contents of
TSTB 1057DD Z: setf result 15 0 the destination address.
Test V: cleared
C. cieared
ROR 0060DD (dst) = (dst) N: setaf high-order bit of Rotates all bits of the destination right one place. The low-
RORB rotate right . the result is set . Jorder bit is loaded into the C-bit and the previous contents of
Rotare Right ‘one place. Z: setif all buts of result the C-bit are luaded into the high-order bit of the destination.
are 0
V: loaded with the exclusive-
OR of the N-bit and the
C-bit as set by ROR
ROL 0061DD (dst) ~ (ds1) N: set if the high order bit of Rotate all bits of the destination left one place. The high-
ROLB 1061DD rotate lef the result word is set order bit is loaded into the C-bit of the status word and the
Rotate Lert one place. (result < 0). cleared Previous contents of the C-bit are loaded into the low-order
otherwise bit of the destination.
Z: setif all bits of the
result word = Q; cleared
otherwise
V: loaded with the exclusive-
OR of the N-bit and C-bit
(as set by the completion
“of the rotate operation)
C: loaded with the high order
bit o the desunanion

L-T°C

Table 2.2

Single Operand Instructions (Cont)

Mnemonic

OP Code

Operation

Cusndition Coudes

Description

ASR
ASRB
Arithmetic
Shift Right

ASL

ASLB
Arithmetic
Shift Left

C062DD
1062DD

0063DD
1063DD

(dst) «~ (dst)
shifted one
place to the
night.

{dst) — (dst)
shifted one

place to the feft.

\’

©setaf the high order b

ol e r2suit 15 ser

tresult < 0). clearad
otherw:se

sef il the resuit = (.
cleured otherw,se

loaded from the exclusive-
OR of the N-bit and C-but
(as set by the compietion
of the shift vperation)
loaded irom low order pit
of the destination

o setf high-order bit of the

(result < 0); cleared
otherwise

- set il the result = Q; cleared

otherwise

loaded with the exclusive.
OR uf the N-bit and C-bi
and C-bit {as set by the
completion of the shft
operition)

loaded with the high-urder
bit ot the destinanon

Shurts ail bits of the destination night one place. The high-
order bit is replicated. The C-bit Is icaded (rom the low-order

bit of the destination. ASR pert

destinatiun by two.

orms signed division of the

oo locks bus

Shafts all bits of the destination left one place. The low-order

bit s loaded with 2 0. The

C-bit of the status word is loaded

from the high-order bit of the destination. ASL performs a
signed multiplication of the destination by 2 with overflow

indication

8-T1°¢

Mnemonic

ASH
Arithmetic
Shift

ASHC
Arithmetic

Shift Combined

SXT
Sign Extend

Op Code Operation

R R Shifted
Arithmetically NN
places to right or
left

Where NN = (src)

072RSS

073RSS R, Rvl« R, Rvl

The double word

is shifted NN
places to the right
or left, where NN =

(sxc)

006 7DD (dst)« 0 if N bit
is clear
(dst)+« -1 N bit

is set

Condition Codes

N: set if result<0Q; cleared
otherwise.

Z: set if result = Q; cleared
otherwise.

V: set if sign of register
changed during shift; cleared
otherwise.

C: loaded from last bit shift
out of register.

N: set if result <0; cleared
otherwise.
Z: set if result = 0; cleared
otherwise.

V: set if sign bit changes
during shift; cleared
otherwise.

C: loaded with high-order bit
when right shift (loaded with
the last bit shifted out of the
32-bit operand).

N: unaffected

2: set if N bit clear
V: cleared

C: unaffected

Description

The contents of the register are shifted
right or left the number of times spe-
cified by the source operand. The shift
count is taken as the low-order 6 bits of
the source operand. This number ranges
from -32 to +3l. Negative is a right
shift and positive is a left shift.

The contents of the register R and Rvl
are treated as one 32-bit register and
shift count (low order 6 bits of source
operand) . This number ranges from -32

to +31. Negative is right shift and
positive is a left shift. Condition codes
are affected by the 32-~bit result. Bits
<31:16> of the result are stored in R if
R is even. Bits <15:0> are stored in Rvl.
R can be odd or even.

If R is odd, the left shift works like a
16-bit left shift. A right shift works
like a 16-bit right rotate for shift
counts up to 16. If a right shift by
more than 16-bits is specified the op-
eration results in an arithmetic right
shift by an amount equal to the shift
count less 16.

If the condition code bit N is set then a
-1 is placed in the destination operand:
If N bit is clear, then a 0 is placed in
the destination operand. This instruc-
tion is particularly useful in multiple
precision arithmetic because it permits
the sign to be extended through multiple
words.

11 /A8

6-1°¢

Table 2.2

Single Operand Instructions (Cont)

—

result is set; cleared
otherwise,

Z: set if low-order byte of
result = 0; cleared otherwise,
V: cleared I

C: cleared

address).

Mnemonic OP Code ; Operation Condition Codes Description

i
SWAB 0003DD Byte 1/Byte 0 N: set if high-order bit of Exchanges high-order byte and low-order byte or the
Swap By1e Byte O/Byte 1 low-order byte (bit 7) of destination word (destination must be 3 word

0T-1°¢

Table 2.3 Double Operand Instructions

Maemonic OP Code Operation Condition Codes Description
MO\ 01SSDD* (dst) < (src) ¥ N: setif (sre) <O. cleared Word: Moves the source operand to the destination location. .
MONS 11SSDD otherwise The previous contents of the destination are lost. The source
Moy Z: setaf {src) = 0. cleured operand is not affected.
otherwise Byte: Sume as MOV The MOVB 10 a resistor (unique among
V: cleared byte instructions) extends the most significant bit of the low
C: not atfected urder byte (sign extension). Otherwise MOVB upemes on
bytes exactly us MOV operates on words.
CMP 028SDD (src) - (dst) N: setif result < 0. cleared Compares the source and destination operands and set - the
QMFP3 ara 128SDD lin detail. ~ otherwise condition codes which may then be used for arithmetic and
Coruce (src) + ~ Z. setif result = Q:cleared | logical conditional branches. Both operands are unaffected.
(dst)+ 1} otherwise The only action is 1o set the condition codes. The compare 1s
V: setil there was arithmenc | customarily followed by a conditional branch instruction. *; e
overilow (i.e., operands that unhke the subtract instruction the order of operation is
were of upposile signs (src) - (dst) not (dst) - (src).
and the sign of the des-
tination was the same
as the sign of the result);
cleared otherwise.
C: cleared if there was a
carry from the most sig-
nificant bit of the result.
set otherwise

TII-1°¢

Table 2-3 Double Operand Instructions (Cont)

Mnemonic OP Code Operation Condition Codes Description
BIT 03SSDD (sre) A\ (dst) N: set of high order bit of Pacforms logical AND comparison of the source and destination
BITB 13SSDD result set: cleared other- vperands and modifies condition codes accordingly . Neither
Bit Test wise the source nor destination operands are affected. The BIT in-
Z: sevuf result = 0. cleared struction may be used to test whether any of the corresponding
otherwise bits that 2re set in the destination are clear in the source.
V: cleared
C: not aftected
BIC 04SSDD (dst) ~ ~ (src) N: set if high order bit of Clears cach bit in the destination that corresponds to a set bit
BICB 14SSDD - A\ dst) result set; cleared other- in the source. The original contents of the destination are lost.
Bit Clear wise The contents of the source are unaffected.
Z: setif result = O; cleared
othcrwise
V: cleared
C: not atfected
BIS 03SSDD (dst) + (src) N: set it hugh order bit of Performs inclusive -OR operation between the source and des-
BISB 158SDD N\ (dst) result set. cleared other- tination operands and leaves the result at the destination
Bit Set wise address. i.e.. corresponding bits st in the destination. The
Z: setf result = 0: cleared contents of the destination are lust.
otherwise
V: cleared
C: not affected
ADD 065SDD (dst) < (s5¢¢) N: setif result 0. cleared Adds the source operand to the destination operand and storcs
Add +(dst) otherwise the result at the destination address. The original contents of
Z. sctaf result = 0: cleared the destination are lost. The contents of the source are not
otherwise affected. Two's complement addition is performed.:

<i-1°¢

Table 2-3

Double Operand Instruction (Cont)

Mnemonic

OP Code

Operation

Condition Codes Description

ADD (Cont)

SLUB
Subtract

© 16SSDD

(dst) « (dst) -
(src) in detail.
(dst) + ~ (src)
+ 1 (dst)

: set if there was arithmetic .

overflow as a result of the
operation (that is, both
operands were of the same
sign and the result was of
the opposite sign); cleared
otherwise.

set if there was a carry from
the most significant bit of
the result; cleared other-
wise.

© sevif result < 0. cleared Subtracts the source operand from the destination operand and

otherwise leaves the result at the destination address. The original contents

: set if resuit = Q. cleared of the destination are lost. The contenis of the source are nout

otherwise affected. In double precision arithmetic, the C-bit, when set.
set if there was arithmetic indicates u borrow.

overtlow as 3 result of '

the operation (j.e., if
operands were of op-
posite signs and the sign
of the source was the
same as the sign of the
result); cleared otherwise
cleared ot theie was o
carry from the most
signiticant bit of the
result: sct otherwise

® SS = source (address mude and register)
T i) = searce contents

€ET-1°¢

Table 2-3

Double Operand Instructions (Cont.)

Mnemonic OP Code Operation Condition Codes Description
MUL 070RSS R,Rvl *Rx(src) N: set if product is<O0: The contents of the destination register
Multiply cleared otherwise. and source taken as two's complement
Z: set if product is 0; integers are multiplied and stored in the
cleared otherwise. destination register and the succeeding
V: cleared register (if R is even). If R is odd, only
C: set if the result is the low-order product is stored. Assembler
less than -215 or greater syntax is: MUL S,R.
than or equal to 215 -1, (Note that the actual destination is
R,Rvl which reduces to just R when R
is odd.)
DIV O71RSS R,Rv1*R,Rvl N: unpredictable if V is set. If division by zero is attempted the
Divide (src) Set if quotient 0; cleared instruction is terminated and the
otherwise. destination operand is left unchanged.
Z: unpredictable if V is set. Otherwise, the 32-bit two's complement
Set if quotient =0; cleared integer in R and Rvl is divided by the
otherwise. source operand. The quotient is left in
V: set if source = 0 or over- R; the remainder in Rvl. Non-zero
flow (quotient less than -215 remainder always has the same sign as
or greater than 215 -1). the dividend. If the quotient cannot be
C: set if source = 0; cleared represented as a 16 bit two's complement
otherwise. integer, overflow occurs. 1In this case
the instruction aborts and the contents of
the destination registers are unpredictable.
If R is odd or if R6 is used the result
is unpredictable.
XOR 074RDD (dst)<«Rv(dst) N: set if the result <0; The exclusive OR of the register and

cleared otherwise.

Z: set if result=0; cleared
otherwise.

V: cleared

C: unaffected

destination operand is stored in the
destination address. Contents of
register are unaffected. Assembler
format is XOR R,D.

Table 2.4 Program Contsol Instructions

vI-1°¢

Mnemonic OP Code Operation _ Condition Codes Description
BR 000400 PC~PC+ Unaffected Provides a way of transferring program control within arange
Branch xxx+ {2 X offser) : of - 128 10 +127 words with a one word instruction. [t is an

unconditional branch.

BNE 001000 PC«PC+ Unaffected Tests the state of the Z-bit and causes a branch i1 the Z-bit is

Branch if not xxx (2 X offser) 1s clear. BNE is the complementary operation to BEQ. It is
equal if2=0 used to test inequality following a CMP, 10 test that same bits

set in the destination were also in the source, following a BIT.
and generally, 1o test that the result of the previous aperation

' wdas ot §
BEQ 001400 PC«PC + Unaffected Tests the state of the Z-bit and causes a branch if Z is st \;
Branch if equal XXX (2 X offset) if an example. it 1s used to test equality following a CMP opera-
Z=} tion. to test that no bits set in the destination were also set in

the source following a BIT operation. and generaily, to test
that the result of the previous operation was 0. .

v
'

BGE 002000 PC ~PC + Unaffected Causes a branch if N and V are either both clear or both set.
Branch if greater XX\ (2 X offset) of BGE is the complementary operation to BLT. Thus. BGE
than or equal NvV=0 always causes a branch when it follows an operation that

caused addition to two pusitive numbers. BGE also causes 4
branch on a 0 result.

SI-1°¢C

Table 2-4 Program Control Instructions {Cont)

Mnemonic OP Code Operation Condition Codes Description
BLT 002400 PC ~PC + Unaffected Causes a branch if the exclusive-OR of the N- and V-bits are .
Branch if less XXX (2 X offset) il Thus. BLT slways branches following an operation that added
than NV=| two negative numbers, even if overflow occurred. In particular.
BLT always causes a branch if it follows a CMP instruction
Opérating on 4 negative source and a positive destin:zion (even
if overflow occurred). Further. BLT never causes a wranch when
it tollows a CMP instruction dperating on a positive source and
negative destination. BLT does not cause a branch if the result
of the previous operation was 0 (without overflow).
BGT 003000 PC~pPC+ Unaffected Operation of BGT is similar to BGE, except BGT does not
Branch if greater XXX (2 X offset) cause a branch on a 0 result.
than ifZv(Nw
V=0
BLE 003400 PC «PC + Unaffected Operation is similar to BLT. but in addition will cause a branch
Branch if less than XXX (2 X offsery if if the result of the previous operation was 0.
or equal to Zv(NwV)
=]
BPL 100000 PC~PC+ Unaffected Tests the state of the N-bit and causes 2 branch if N is clear.
Branch if plus XXX (2 X offset) if BPL is the complementary operation of BMI.
N=0 :
BMI 100400 PC«~PC+ Unatfected Tests the state of the N-bit and causes a branch if N isset. ltas
Branch if minus XXX (2 X offset) ul used to test the sign (most significant bit) of the result of the
N=1 previous operation. '

9T~1°¢

Table 24 Program Control Instructions {Comt)

Mnemonic OP Code Operation Condition Codes Description
BHI 101000 PC+~PC+ Unaffected Causes a branch if the previous operation causes neither a carry
Branch 1f higher XXX (2 X offset) if nor a 0 result. This will happen in comparison (CMP) operations
C=0 as long as the source has a higher unsigned value than the

desunation.

BLOS 101400 PC«~PC+ . Unaffected Causes a branch if the previous operation caused either a carry

Branch if lower XXX (2 X offser) if or a 0 result. BLOS is the complementary operation to BHI.

or same CvZ=| The branch occurs in comparison operations as long as the
source s equal to or has a lower unsigned value than the
destination. Comparison of unsigned values with the CMP
instruction to be tested for “higher or same™ and “higher™ by
a simpic test of the C-bit.

BvC 102000 PC+~PC+ Unaffected Tests the state of the V-bit and causes a branch if the V-bit is

Branch if V-bit XXX (2 X offset) if " clear. BVC is complementary operation to BVS.

clear V=0

BVS ~ 102400 PC+~PC+ Unaffected Tests the state of V-bit (overflow) and causes a branch it the

Branch if V-bit set XXX (2 X offset) if V-bit is set. BVS is used to detect arithmetic overflow in the

V=i previous operaticn.

BCC 103000 PC «PC + Unaffected Tests the state of the C-bit and causes a branch if C is clear.

BHIS XXX (2 X offset) if BCC 15 the complementary operation to BCS.

Branch if carry C=0

clear

Branch if higher

than the same

BCS 103400 PC-PC+ Unaitected Tests the state of the C-bit and causes a branch ifCisset. It is

BLO XXX (2 X offset) if used 10 test for a carry i the result of g previous operation.

Branch if carry set C=1 i

Branch 1if lower

LT-1°C

Mnemonic

JMP
Jump

SPL
Set Priority
Level

OP Code

0001DD

00023N

Operation * Condition Codes

PC<(dst) Unaffected

PS <7:5> + priority N Unaffected

Description

JMP provides more flexible program branch-
ing than provided with the branch instruc-

‘tion. Control may be transferred to any

location in memory (no range limitation)
and can be accomplished with the full
flexibility of the addressing modes with
the exception of register mode 0. Exe-
cution of a jump with mode 0 will cause
an illegal instruction condition. (Pro-
gram control cannot be transferred to a
register.) Register deferred mode is
legal and will cause program control to
be transferred to the address held in the
specified register. Note that instructions
are word data and must therefore be
fetched from an even numbered address. A
boundary error trap condition will result
when the processor attempts to fetch an
instruction from an odd address.

The least significant three bits of the
instruction are loaded into the Program
Status Word(PS) bits 7-5 thus causing a
changed priority. The old priority is
lost.

Assembler syntax is: SPL N :
Note: This instruction is a no op in User
and Supervisor modes.

11/68

8T-1°¢

Table 2-4 Program Control Instructions (Cont)

Mnemonic OP Code Operation Condition Codes Description

JRS 004RDD (tmp) « (dst) Unaffected In execution of the JSR, the oid contents of the specified

Jump to0 (tmp is an inter- register (the linkage pointer) are automatically pushed onto

subroutine nal processor the processor stack and new linkage information placed in
register) the register, Thus. subroutines nested within subroutines to any
L (SP) « reg depth may all be called with the same linkage register. There
(push reg con- is no need either 10 plan the maximum depth at which any
tents onto proces- particular subroutine will be called or to include instructions
sor stack) in each routine to save and restore the linkage pointer. Further,
teg —~ PC PC since all linkages are saved in a re<ntrant manner on the pro-
holds lucation fol- cessor stack, execution of a subroutine may be interrupted,
lowing ISR this and the same subroutine re-entered and executed by an in-
address PC « terrupt service routine. Execution of the initial subr->unine can
(tmp). now put in then be resumed when other requests are satisfied. This pro-
(reg) cess (called nesting) can proceed to any level.

' JSR PC. dst is a special case of the PDP-1] subroutine call
suitable for subroutine calls that transmit parameters.

RTS 00020R PC «(reg) Unatfected Loads contents of register into PC and pops the top element

Return from (reg) -~ SP ¢ of the processor stack into the specified register.

subroutine

Return from 4 non-re-entrant subroutine is typically made
through the same register that was used in its call. Thus. a
subroutine called with a JSR PC. dst exits with an RTS PC,
and a subroutine called with a JSR RS. dst may pick up
parametess with addressing odes (R5) +, X (RS). or @X (RS)
and finally exst, with an RTS RS .

61-1°¢

Mnemonic

RTI

RTT

OP Code

000002

000006

Operation

PC+(sP) 4
PSW+«(sp) 4

PC«(sP) ¢
PS«(SP) +

Condition Codes

N: loaded from
stack
Z: loaded from
stack
V: loaded from
stack
C: loaded from
stack

N: loaded from
stack
Z: loaded from
stack
'V: loaded from
stack
C: loaded from
stack

processor

processor

processor

processor

processor

processoxr

processor

processor

Description

Used to exit from an interrupt or trap
service routine. The PC and PSW are
restored (popped) from the processor
stack. If the RTI sets the T-bit in the
PSW, a trace trap will occur prior to
executing the next instruction.

This is the same as the RTI instruction,
except that it inhibits a trace trap,
while RTI permits a trace trap. If a
trace trap is pending, the first instruc-
tion after the RTT will be executed prior
to the next "T" trap. In the case of

the RTI instruction, the "T" trap will
occur immediately after the RTI.

In RTT and RTI, only transactions from
more privileged processor modes to the
same or less privileged modes are al-
lowed. When executed in Supervisor mode,
the new PSW bits cannot be Kernel. When
executed in User mode, the new PSW mode
bits can only be User.

11/68

0Z-T°¢C

Table 24 Program Control Instructions (Cont)

Mnemonic OP Code Operation Conditioa Codes Description
MARK 0064 NN SP ~ SP + 2xnn Unaffected Used as part of the standard PDP-11 subroutine return
PC~R3 convention. MARK facilitates the stack clearup pro-
R5~¢SP) * cedures involved in subroutine exit. Assembler format
an = number of 1s: MARK N
parameters .
Example: MOV R35,«SP) place old R3 on stack
MOV P1,«SP) place N parameters on
MOV P2,«SP) 1the stack to be used

;there by the subroutine’

MOV PN,<{SP) ;places the instruction
MOV =MARKN,«SP) :MARK N on the s:ack
set up address at “lark

MOV SP,RS N instruction
JSR PCSUB ;jump to subroutine
At this point the stack is as follows:
OLD R3
Pl
PN
MARK N
oLDPC

And the program is at the address SUB which is the

beginning of the subroutine.
SUB: execution of the subroutine itself

RTS RS: ;the return begins

This causes the contents of RS to be placed in the PC
which then results in the execution of the instruction
MARK N. The contents of old PC are placed in R5

MARK N causes: (1) the stack pointer to be adjusted to
point to the old RS value: (2) the value now in RS (the
old PC) to be placed in the PC, and (3) contents of the
old R3 to be popped into RS, thus completing the return
from subroutine.

1C-1°¢

Table 244 Program Control Instructions (Cont)

Mnemonic OP Code Operation Condition Codes Description
SOB 077R00 R~R-1 Unaffected The register is decremented. If it is not equal to 0, twice
Subtract one and plus offset | if this result # the offset is subtracted from the PC (now pointing to the
branch if not 0 then PC + PC following word). The offset is interpreted as a six-bit
equal to 0 -(2 x offset) positive number. This instruction provides z fast, efficient
method of loop control. Assembler synatax is:
SOBRA
where A is the address to which transfer is to be made if
the decremented R is not equal to 0. Note that the SOB
instruction cannot be used to transfer control in the
forward direction.
BPT 000003 +(SP)~PS - N: loaded from trap vector- Pesforms a trap sequence with a trap vector address of 14,
Break-point Trap + (SP) ~PC Z: loaded from trap vector Used to call debugging aids. The user is cautioned against
PC ~(14) V: loaded from trap vector employing code 000003 in programs run under these
PS «~ (16) C: loaded from trap vector debugging aids.
10T 000004 + (SP) ~PS N: loaded from trap vector Performs a trap sequence with 2 trap vector address of
IOT Trap L (SP)+~PC Z: loaded from trap vector 20. Used to call the I/O executive routine 10X in the
PC ~(20) C: loaded from trap vector paper-tape software system and for error reporting in the
PS ~(22) disk operating system.

cc-1°¢

Table 2-4 Program Control Instructions (Coat)

Mnemonic OP Code Operation Condition Codes : Description
I
EMT 104000 4 (SP) — PS N: loaded from trap vecor All operation codes from 104000 to 104377 are EMT
Emulator Trap $(SP) ~PC Z: loaded from trap vecior instructions and may be used to transmit information to
PC - (30) V: loaded from trap vector the emulating routine (e.g., function to be performed).
PS—-(32) C: loaded from trap vector The trap vector for EMT is at address 30; the new central
Processor status (PS) is taken from the word at address 32,
‘ CAUTION
.‘ EMT is used frequently by DEC system software
i and is therefore not recommended for general use.
TRAP 10440010 | | (SP)«PS N: loaded from trap vector Operation codes from 104400 to 104777 are TRAP instruc-
104777 { (SP) -~ PC Z: loaded from trap vector tions. TRAPs and EMTs are identical in operation, except
PC «~(34) V: loaded from trap vector that the trap vector for TRAP is at address 34.
PS «~(36 C: loaded from t ector |
) o tom trap vector NOTE
Since DEC software makes frequent use of EMT, the
TRAP instruction is recommended for general use,

NOTE: Condition Codes are unaffected by these instructions

*DD = destination (address mode and register)
t(dst) = destination contents

€C~-T1°C

Table 2-5 Miscellaneous Instructions (Cont.)

Mnemonic

OP Code

Operation

Condition Codes

Description

WAIT

RESET

MFPT

000001

000005

QL

PC(SP)
PSW(SP)

RO< 7: 0>«
Processor Code
Code 1
RO<15:8>+«
Processor
Subcode

Unaffected

Unaffected

Unaffected

Provides a way for the processor to
relinquish use of the bus while it
waits for an external interrupt.
Having been given a WAIT command, the
pProcessor will not compete for bus

by fetching instructions or operands
from memory. This permits higher
transfer rates between device and
memory, as no processor-induced latencies
will be encountered by bus requests
from the device. In WAIT, as in all
instructions, the PC points to the
next instruction following the WAIT
operation. Thus, when an interrupt
causes the PC and PS to be pushed onto
the stack, the address of the next
instruction following the WAIT is
saved. The exit from the interrupt
routine (i.e.,, execution of an RTI
instruction) will cause resumption of
the interrupted process at the
instruction following the WAIT.

Sends INIT on the Unibus for 100 ms.
All devices on the Unibus are reset to
their state at power-up.

Upon execution, the MFPT instruction
returns to the low byte of RO a
processor model code (octal 3 for
PDP 11/68.)

The high byte of RO will be
loaded with a processor specified -
subcode (octal ¢ for PDP 11/68.

ye-17¢

Table 2-5 Miscellaneous Instructions (Cont.)

Mnemoric OP Code Operation Condition Codes Description
MFPI 006555 {temp)+ (src) N: set if the source <0; This instruction is provided in order to
MFPD 106555 ¥ (sp)* (temp) otherwise cleared allow inter-address space communication
Z: set if the source =0; when the PDP 11/68 is using the Memory
otherwise cleared Management unit. The address of the
V: cleared source operand is determined in the
C: unaffected current address space. That is, the
address is determined using the SP and
memory pages determined by PS<15:14>.
The address itself is then used in the
previous I(D) space (as determined by
PS<13:12> to get the source operand.
This operand is then pushed on to the’
current R6 stack.
MTPI 006655 (temp)+ (SP) N: set if the source <0; The address of the destination operand
MTPD 106655 (dst)< (temp) otherwise cleared is determined in the current address
Z: set if the source =0; space. MTPI(D) then pops a word off
otherwise cleared the current stack and stores that word
V: cleared in the destination address in the
C: unaffected previous mode's I(D) space (bits 13,
12 of PS).
HALT 000000 Unaffected Causes the processor operation to

cease. The console is given control

of the processor. The console data
lights display the address of the HALT
instruction plus two. Transfers on the
Unibus are terminated immediately. The
PC points to the next instruction to be
executed. Pressing the CONT key on the
console causes processor operation to
resume. No INIT signal is given.

Table 2-6 Condition Code Operators

Mnemonic Op Code lastruction
CLC 000241 Clear condition code C.
CLV 000242 Clear condition code V.
Cl.z 000244 Clear condition code Z.
CIN nN2s9 Clear condition code N.
cCe 000257 Clear all condition code bits.
SEC 000261 Set condition code C.
SEV 000262 Set condition code V.
SEZ 000264 Set condition code Z.
SEN 000270 Set condition code N.
SCC 000277 Set all condition code bits.
“ NOTE

Selcctahle combinations of condition code bits may
be clcared or set together. The status of bit 4 controls
the way in which bits 0, 1, 2, and 3 are to be modi-
fied. If bit 4 = 1, the specified bits are set; if bit 4 =
0, the specified bits are cleared.

1 Singie Oporgnd Giovp (CLW CLNG.C OM.COMB. INC,INCO, DEC. (F LB, NEG, NEGS. ADC, AOCH.SBC.S8CH,TST.1STH, 008 SORE, AOL MOLB.ASA asAp,

ASL,ASLE, UMP, SwaAS)

L e

1

19

2 Dovbte Dperens Grave (BT M TB.01C. BICAH,. 8IS, 8138,400, SUB)

l OF fode
i 1.

"y

S Pragrom Contrni Geaup
9.810nchian beonch aghychione)

b Jump to Sulsaine {JSR)

€. Seenutine Petun (RTS)

4. Tenpsideaed poent, 107, € MY, TAAP)

4 Opeome frause (HALT.WAIT RTE AESET)

L OF Code [oltyer ~]

i i 2 1 1 i " i 1 I n 1. 1 5
9 L] ’ o
] (1]] S rem I

1 — L 4 4 L 4 - L 1 1 A i

L n [o 2 [+] I 19 ’
I 1 1] I 1 1 1 1 1 i 1 i 4

l 0® Ccooe l
] L L L . N n 1 1 i i e

[ne cont, l
i] 1 1 1 i 1 1 A

S Condion Code Qporatres(on randiloan cade struction)

S B) KA EA B

d " I 1 L L i X 1 i

Figure 2-2 PDP-11 Instruction Formats

2.1-25

9¢-1°¢

Table 2-7

1. OPR%R, (R)+ or OPR%R, -(R) using the same
register as both source and destination:
contents of R are incremented (decremented)
by 2 before being used as the source
operand.

OPR%R, (R)+ or OPR%R, ~(R) using the same
register as both register and destination:

initial contents of R are used as the source

operand.

2. OPR%R, @(R)+ or OPR%R, @-(R) using the same

register as both source and destination:
contents of R are incremented (decremented)
by 2 before being used as the source
operand.

OPR%R, @(R)+ or OPR%R, @-(R) using the same

register as both source and destination:

initial contents of R are used as the source

operand.

3. OPR PC, X(R); OPR PC, @ X(R); OPR PC, @ A;
OPR PC, A: Location A will contain the PC
of OPR +4.

OPR PC, X(R); OPR PC, @ X(R), OPR PC, A;
OPR PC, @ A: Location A will contain the
PC of OPR +2.

4. JMP (R)+ or JSR reg, (R)+: Contents of R
are incremented by 2, then used as the new
PC address

JMP (RP)+ or JSR reqg. (R)+: Initial
contents of R are used as the new PC.

5. JMP %R or JSR reg, %R traps to 4 (illegal

instruction).

Programming Differences

44

04

34 F1l1 LSI11 05/10 15/20

X
X

X
X

X
X
X X
X X

X

35/40 45
X

X
X

X
X

X
X X
X

68

11/68

Le-1°¢

Table 2-7

JMP %R or JSR reg, 3R traps to 10 (illegal
instruction).

SWAB does not change V.
SWAB clears V.

Register addresses (177700-177717) are valid
Program addresses when used by CPU.

Register addresses (177700-177717) time out
when used as a program address by the CPU.

Programming Differences

44

X

X

Can be addressed under console operation.&._. MM“

Note addresses cannot be addressed under
Console for LSI-11 or Fll.

. Basic Instructions noted in PDP-11 processor

handbook.

SOB, MARK, RTT, SXT instructions
ASH, ASHC, DIV, MUL, XOR

MFPT Instruction

The external option KEll-A provides MUL, DIV,
SHIFT operation in the same data format.

The KE1l-E (Expansion Instruction Set)
provides the instructions MUL, DIV, ASH,
and ASHC. These new instructions are 11/45
compatible.

The KE11l~F adds unique stack ordered floating
point instructions: FADD, FSUB, FMUL, FDIV.

The KEV-11 adds EIS/FIS instructions

SPL Instruction

04 .

34

Fl1

LSI11 05/10 15/20

X
X X
X
X X
X X X
X
X
X X
X

35/40

45

70

68

11/68

8Z-1°2

9.

10.

11.

12.

Table 2-7 Programming Differences (Cont.)

44

Power fail during RESET instruction is not
recognized until after the instruction is
finished (70 milliseconds). RESET
instruction consists of 70 millisecond pause
with INIT occurring during first 20 milli-
seconds.

Power fail immediately ends the RESET X
instruction and traps if an INIT is in

progress. A minimum INIT of 1 microsecond

occurs if instruction aborted. PDP 11/04/34/44

&e similar with no minimum INIT time'

Power fail acts the same as 11/45 (22 milli-
seconds with about 300 nanoseconds minimum).
Power fail during RESET fetch is fatal with
no power down sequence.

RESET instruction consists of 10 Usec of INIT
followed by a 90 Usec pause. Power fail not
recognized until the instruction is complete.

No RTT instruction

If RTT sets the T bit, the T bit trap occurs X
after the instruction following RTT.

If RTI sets "T" bit, "T" bit trap is acknowledged
after instruction following RTI.

If RTT sets "T" bit, "T" bit trap is acknowledged X
immediately following RTI.

If an interrupt occurs during an instruction X
that has the "T" bit set, the "T" bit trap is
acknowledged before the interrupt.

If an interrupt occurs during an instruction
and the "T" bit is set, the interrupt is
acknowledged before "T" bit trap.

04

34 F11 LSI1l 05/10 15/20

X
X
X
X X
X X
X X X
X X
X X X
X X X X X

35/40 45
X

X
X X
X X
X

X

70

68

11/68

6¢-1°¢

Table 2-7 Programming Differences (Cont.)

44 04 34 F1l1 LsSI11 05/10 15/20 35/40 45 70 68

"T" bit trap will sequence out of WAIT X X X X - X X X
instruction.

"T" bit trap will not sequence out of X X X X
WAIT instruction. Waits until an interrupt.

Explicit reference (direct access) to PS can X X X
load "T" bit. Console can also load "T" bit.

Only implicit references (RTI, RTT, traps and X X X X X X X X
interrupts) can load "T" bit. Console cannot
load "T" bit.

0dd address/non-existent references using the X X X X X X X
SP cause a HALT. This is a case of double

bus error with the second error occurring in

the trap servicing.the first error. 0dd

address trap not in LSI-11 or F-11.

0dd address/non-existent references using X X X X
the stack pointer cause a fatal trap. On bus '

error in trap service, new stack created at 0/2.

. The first instruction in an interrupt routine X X X X X X X X X X
will not be executed if another interrupt occurs

at a higher priority level than assumed by the

first interrupt.

The first instruction in an interrupt service X
is guaranteed to be executed.

8 General purpose registers. X X X X X X X X

16 General purpose registers. X X X

11/68

0g-1°2

18.

19.

20.

21.

22.

23.

24,

25.

. Table 2-7 Programming Differences (Cont.)

44 04 34 F-11 LSI11 05/10 15/20

ESW address, 177776, not implemented must use
new instructions, MTPS (move to PS) and MFPS
{mcve from PS).

©SW address implemented, MTPS and MFPS not X X
imrlemented.

PSW address and MTPS and MFPS implemented. ‘ X X
Cnly one interrupt level (BR4) exists.

Feur interrupt levels exist. X X X X
S«ack overflow not implemented.

Scme sort of stack overflow implemented. X X X X

cdd addreés trap not implemented. X
0dd address trap implemented. X X X

FMUL and FDIV instructions implicitly use
Re {one push and pop); hence R6 must be set
ur correctly. '

rX7L and FDIV instructions do not implicitly
use R6.

Due to their execution time, EIS instructions
can abort because of a device interrupt.

EIS instructions do not abort because of a X X X
device interrupt.

Cue tc their execution time, FIS instructions
can atort because of a device interrupt.

S instructions do a DATIP and DATO bus
seguence when fetching source operand.

X

35/40 45
X X

X X

X X

X X

X

X X

X

© 70 68
X X
X X
X X
X X
X X

11/68

TE-1°C

‘Table 2-7 Programming Differences (Cont.)
44 04 34 F-11 LSI11 05/10 15/20 35/40 45 ~ 70 68

EIS instructions do a DATI bus sequence when X X X ' X X X X
fetching source operand. ‘

MOV instruction does just a DATO bus sequence X X X X X X X
for the last memory cycle.

MOV instruction does a DATIP and DATO bus X X X
sequence for the last memory cycle. '

If PC contains non-existent memory address and X X X X X X X X X
a bus error occurs, PC will have been incremented.

If PC contains non-existent memory address and X
a bus error occurs, PC will be unchanged.

If register contains non-existent memory X X X X X X
address in mode 2 and a bus error occurs,
register will be incremented.

Same as above but register is unchanged. X X X

If register contains an odd value in mode 2 X X X X X
and a bus error occurs, register will be
incremented.

If register contains an odd value in mode 2 X X X X X
and a bus error occurs, register will be
unchangeqd.

Condition codes restored to original values X
after FIS interrupt abort (EIS doesn't
abort on 35/40)

Condition codes that are restored after X
EIS/FIS interrupt abort are indeterminate.

=
>
=<
>
P
=
>
>
>
=

OP codes 075040 through 075377 unconditionally
trap to 10 as reserved Op codes.

11/68

ce-1°¢

32.

33.

34.

Table 2-7 Programming Differences (Cont.)

If KEV-11 option is present, Op codes 75040
through 07533 perform a memory read using the
register specified by the low order 3 bits as

a pointer. If the register contents are a non-
existent address, a trap to 4 occurs. If the
register contents are an existent address, a
trap to 10 occurs.

Op codes 210 thru 217 trap to 10 as reserved
Op codes.

Op codes 210 thru 217 are used as a maintenance

‘instruction.

’

Op codes 75040 thru 75777 trap to 10 as
reserved Op codes.

Only if KEV-1l option is present, Op codes
75040 thru 75377 can be used as escapes to
user microcode. Op codes 75400 thru 75777
can also be used.

As escapes to user microcode and KEV-11 option
need not be present. If no user microcode
exists, a trap to 10 occurs.

Op codes 170000 thru 177777 trap to 10 as reserv
reserved instructions.

Op codes 170000 thru 177777 are implemented as
floating point instructions.

Op codes 170000 thru 177777 can be used as
escapes to user microcode. If no user microcode
exists, a trap to 10 occurs.

44

04

34 F-11 LSI11

X
X X

X
X X

X
X X

X

5/10 15/20
X X
X X
X X

35/40 45
X X
X X
X

X

~ 70

68

11/68

€e-T°C

35.

36.

37.

38.

39.

40.

Table 2-7 Programming Differences (Cont.)

CLR and SXT do just a DATO sequence for the
last bus cycle.

CLR and SXT do DATIP-DATO sequence for the
last bus cycle. :

MEM.MGT maintenance mode SR@ bit 8 is implemented.

MEM.MGT maintenance mode SR@ bit 8 is not
implemented.

PS<15:12>, user mode, user stack pointer, and
MTPX and MFPX instructions exist even when
MEM.MGT is not configured.

PS<i5:12>, user mode, user stack pointer, and
MTPX and MFPX instructions exist only when
MEM.MGT is configured.

Current mode PS bits <15:14> set to illegal mode

will cause a MEM.MGT trap upon any memory
reference (@1 is illegal in 34, 60, 35/40)

Current mode PS bits <15:14> set to 01 or 10
will be treated as kernel mode (00) and not
cause a MEM.MGT trap.

MTPS in user mode will cause MEM.MGT trap if-
PS address 177776 not mapped. If mapped PS
<7:5> and <3:0> affected.

MTPS in user mode will only affect PS <3:0>
regardless of whether PS address 177776 is
mapped.

MFPS in user mode will cause MEM.MGT trap if
PS address 177776 not mapped. If mapped, PS
<7:0> are accessed.

34 F-11 LSI11 05/10 15/20

X

35/40

45

70 68
X X
X X
X X
X X

1l/68

ve-1°¢

41.

Table 2-7 Programming Differences (Cont.)

44
MFPS in user mode will access PS <7:0>
regardless of whether PS address 177776
is mapped.
A HALT instruction in user mode traps to 4. X

A HALT instruction in user mode traps to 10.

04

34 F-11 LSI11 05/10 15/20

X

35/40 45

70

68

11/68

g€-1°¢

LSI-11

Priority of
processor traps.

Bus error trap

Memory refresh

TRAP Instructions

TRACE Trap

Power Fail Trap

HALT LINE

Event Line Inter-
rupt

Device (BUS)

Interrupt Request

11/04

Same as 11/05

11/44

Same as 11/34 with
PROGRAM INTERRUPT
Request having
higher priority than
UNIBUS BUS

REQUESTS.

Hardware Differences -- Traps
(Transparent to Software)

PDP11/05,10

Priority of internal
processor traps,
external interrupts,
HALT and WAIT:

Bus Error Trap
TRAP Instructions
TRACE Trap

OVFL Trap

PWR Fail Trap
UNIBUS BUS
REQUEST

CONSOLE STOP

WAIT LOOP

11/34

Same as 11/35 but no
red zone stack over-
flow.

PDP11/15,20

Priority of internal
processor traps,
external interrupts,
HALT AND WAIT:

Bus Error Trap

Trap Instructions
TRACE Trap

OVFL Trap

PWR Fail Trap
CONSOLE BUS REQUEST
UNIBUS BUS REQUEST
WAIT LOOP

F-11

Same as 11/34

PDP11/35,40

Priority of internal
processor traps,
external interrupts,
HALT and WAIT:

Memory Parity Errors

Memory Management
Fault

BUS ERROR Traps

OVFL Trap (red zone)

TRAP instructions

TRACE Trap

OVFL Trap (yellow zone)

PWR Fail Trap
CONSOLE BUS request
UNIBUS BUS request
WAIT LOOP

11/68

(See Trap Priorities
Section)

PDP11/45,70

Priority of internal
Processor traps,
external interrupts,
HALT and WAIT:

Memory Parity Error

Bus Error Traps

TRAP Instructions

CONSOLE BUS Request

Memory Management

OVFL Trap

FLOATING POINT

Trap

PROGRAM INTERRUPT
request

UNIBUS BUS Request

WAIT LOOP

TRACE Trap

2.2

Processor Control Registers

Processor Registers

CPU Error Register 17 777 766

Illegal Halt

044 Address Error
Non-Existent Memory (Cache)
Unibus Time-Out
Yellow Zone Stack Limit
Red Zone Stack Limit

UCsS Parity Error

This register identifies the source of the abort or trap that used
the vector at location 4.

Bit

Name

Illegal Halt

0dd Address
Error

Non-Existent
Memory

UNIBUS Timeout
Yellow Zone
Stack Limit

Red Zone
Stack Limit

UCS Parity
Error

Function

Set when trying to execute a HALT instruction
when CPU is in User or Supervisor mode (not
Kernel).

Set when a program attempts to do a word reference
to an odd address.

Set when the CPU receives a timeout upon reference
to a main memory address. This does not include
UNIBUS addresses.

Set when there is no response on the UNIBUS
within approx. 20 usec.

Set when a yellow zone trap occurs.

Set when a red zone trap occurs.

Set when a UCS parity error occurs.

2.2-1

NOTE: Any DATO or DABOB to this register clears it.

11/68

Processor Status Word 17 777 776

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Priority T N |z v c

N ' L)
Current
Mode

Previous
Mode

General Register

Set (0,1)
CIS Instruction
Suspension
MODE: 00 = Kernel
0l = Supervisor
11 = User

The Processor Status Word contains information on the current status
of the CPU. This information includes the register set currently

in use; current processor priority; current and previous operational
modes; the condition codes describing the results of the last
instruction; and an indicator for detecting the execution of an
instruction to be trapped during program debugging. The CIS
suspension bit indicates that a CIS instruction has been interrupted
before completion.

Program Interrupt Register 17 777 772

A request is booked by setting one of the bits 15 through 9 (for
PIR 7 -- PIR 1) in the Program Interrupt Register at location

17 777 772. The hardware sets bits 7 - 5 and 3 - 1 to the encoded
value of the highest PIR bit set. This Program Interrupt Active
(PIA) should be-used to set the Processor Level and also index
through a table of interrupt vectors for the seven software
priority levels. The figure shows the layout of the PIR Register.

.

4 3 1 ()

e ~TA VA)

When the PIR is granted, the Processor will Trap to location 240
and pick up PC in 240 and the PSW in 242. It is the interrupt
service routine's responsibility to queue requests within a priority
level and to clear the PIR bit before the interrupt is dismissed.

2.2-2 ' 11/68

STACK LIMIT Register 17 777 774
The Stack Limit allows program control of the lower limit for permissible
stack addresses. This limit may be varied in increments of (400). bytes
or (200). words, up to a maximum address of 177 400 (almost the top
of a 32K memory).

The normal boundary for stack addresses is 400. The Stack Limit option
allows this lower limit to be raised, providing more address space for
interrupt vectors or other data that should not be destroyed by the pro-
gram. -

There is a Stack Limit Register, with the following format: '

The Stack Limit Register can be addressed as a word at location 17
777774, or as a byte at location 17 777775. The register is accessible to
the processor and console, but not to any bus device.

The 8 bits, 15 through 8, contain the stack limit information. These bits
are cleared by System Reset, Console Start, or the RESET instruction.
The lower 8 bits are not used. Bit 8 corresponds to a value of (400).
or (256)u.. ‘

Stack Limit Violations

When instructions cause a stack address to exceed (go lower than) a
limit set by the programmable Stack Limit Register, a Stack Violation
occurs. There is a Yellow Zone (grace area) of 16 words below the Stack
Limit which provides a warning to the program so that corrective steps
can be taken. Operations that cause a Yellow Zone Violation are com-
pleted, then-a bus error trap is effected. The error trap, which itseif uses
the stack, executes without causing an additional violation, unless the
stack has entered the Red Zone. -

A Red Zone Violation is a Fatal Stack Error. (Odd stack or non-existent
stack are the other Fatal Stack Errors.) When detected, the operation
causing the error is aborted, the stack is repositioned to address 4, and
a bus error occurs. The old PC and PS are pushed into location 0 and 2,
and the new PC and PS are taken from locations 4 and 6.

Stack Limit Addresses

The contents of the Stack Limit Register (SL) are compared to the stack
address to determine if a violation has occurred. The least significant
bit of the register (bit 8) has a value of (400).. The determination of the
violation zones is as follows:

Yetlow Zone = (SL) 4 (340 through 377). execute, then trap

Red Zone < (SL) 4 (337). abort, then trap to lo-
cation 4

if the Stack Limit Register contents were zero:

Yeliow Zone = 340 through 377
Red Zone = 000 through 337

wheena\ gugky no¥ O-QQMQQ“

2.2-3

11/68

2.3

Aborts, Traps, Interrupts

Processor Traps

There are a series of errors and programming conditions which will
cause the Central Processor to trap to a set of fixed locations.
These include Power Failure, 0dd Addressing Errors, Stack Errors,
Timeout Errors, Non-Existent Memory References, Memory Parity
Exrors, Memory Management Violations, Floating Point Processor
Exception Traps, use of Reserved Instructions, use of the T bit
in the Processor Status Word, and use of the IOT, EMT, and TRAP

instructions.

Trap Priorities

Aborts

Micro break

UCS Parity Error

0dd address

Red Zone

Memory Management Abort
Cache Parity Abort
Memory Parity Error

Bus Errors (Timeout)

Interrupts and Traps

Trap Instructions

Console interrupt

Cache Parity Trap

Yellow Zone Stack Warning
Power Fail

Floating Point Exception

PIRQ7
BR7

PIRQ6
BR6-

PIRQS
BR5

PIRQ4
BR4

PIRD3
PIRQ2

PIRQ1
Trace Trapff

2.3-1

11/68

Processor Trap Vectors

The following summary is the set of conditions and vector locations

which causes the processor to trap.

Vector (8) Conditions
004 CPU Errors

Illegal HALT, illegal odd—aédress

reference, Non-existant Memory
reference (Main-Memory Timeout),
Unibus Timeout, Yellow Zone,

Red Zone, Stack Violations,
Control Store Parity erryror. Con-
ditions are logged in the CPU
Error Register. (See Section on
Programming Differences).

JMP and JSR. Mode @ plus reserved

Cache parity ,

Errors aborts, Cache parity traps, Main
Memory aborts. Conditions are
logged in Cache/Memory System
Error Register. (See section on
Programming Differences).

Conditions logged in FEC & FEA
registers accessed via STST in-
struction.

010 Illegal and Re-
served Instructions opcodes.

014 BPT breakpoint
and Trace Trap

020 IOT Input/output
Trap

024 Power Fail/Power up

030 EMT Emulat@r Trap

034 TRAP instruction

114 Memory System

240 PIR

244 Floating Point
exceptions

250 Memory Manage-

Conditions & information logged in

MMR@\MMR1, MMR2,M MR,

ment aborts

2.3=-2 11/68

UCS Parity Error

If a parity error is detected during access to the User Control
store, an abort occurs with a resultant trap to vector 4.

0dd Addressing Errors

This error occurs whenever a program attempts to execute a word
instruction on an odd address (in the middle of a word boundary).
The instruction is aborted and the CPU traps through location 4.

Stack Limit Violations

When instructions cause. a stack address to exceed a limit set by
the programmable Stack Limit Register, a stack violation occurs
resulting in a trap to vector 4. A yellow zone stack violation
provides a warning to the program so that corrective steps can be
taken. If stack operations result in pushes beyond the 16 word
grace area below the stack limit, a red zone Fatal Stack Vio-
lation occurs. (See Stack Limit operations in Processor Control
section.)

2.3-3

11/68

Memory Management Abort

When the memory management unit is enabled (MMR@<@>=1l), program access.
to non-resident pages, write operations to read-only pages, and pro-
gram references to addresses beyond the limit set for the current
pages results in an instruction abort with a resultant trap to vec-
tor 240. (See Memory Management Section.)

Memory System Errors

Memory errors resulting from cache parity errors with traps enabled
(CCR<g> = @), cache parity aborts (CCR<@g7> = 1) enabled, or main
memory double bit errors results in a trap to vector 1l1l4.

Non~Existent Memory Errors

This error occurs when a program memory reference results in a time-
out response. The cycle is aborted and the processor traps through
vector 4 with bit <5> set in the CPU Error Register.

UNIBUS Time-out Error

This error occurs when a Master Synchronization pulse is placed on
the UNIBUS and there is no slave pulse within 20 usec. This error
usually occurs in attempts to address non-existent peripherals.

The offending instruction is aborted and the processor traps through
location 4.

2.3-4 11/68

Reserved Instructions

There is a set of illegal and reserved instructions which cause the
processor to trap through Location 10. All illegal and reserved
instructions trap to vector 1p with the exception of an illegal
HALT which traps to vector 4 with Bit <7> set in the CPU Error
Register.

Power Failure

Whenever AC power drops below 95 volts for 110v power (190 volts
for 220V) or outside the limit of 47 to 63 Hz, as measured by DC
power, the power fail sequence is initiated. The Central Processor
automatically traps to location 24 and the power fail program has 2
msec. to save all volatile information (data in registers), and to
condition peripherals for power fail.

When power is restored the processor traps to location 24 and
executes the power up routine to restore the machine to its state
prior to power failure.

2.3-5
11/68

2.4

Memory Management

General

The ppP-11/68 Memory Management Unit provides the hardware facilities
necessary for complete memory management and protection. It is
designed to be a memory management facility for accessing all of
physical memory and for multi-user, multi-programming systems where
memory protection and relocation facilities are necessary.

In order to most effectively utilize the power and efficiency of the
PDP-11/68 in medium and large scale systems it is necessary to run
several programs simultaneously. In such multi-programming environ-
ments, several user programs would be resident in memory at any given
time. The task of the supervisory program would be: control the
execution of the various user programs, manage the allocation of
memory and peripheral device resources, and safeguard the integrity
of the system as a whole by careful control of each user program.

In a multi-programming system, the Memory Management Unit provides
the means for assigning memory pages to a user program and preventing
that user from making any unauthorized access to these pages outside
his assigned area. Thus, a user can effectively be prevented from
accidental or willful destruction of any other user program or the
system executive program.

The basic characteristics of the PDP-11/68 Memory Management Unit
are:

16 User mode memory pages

16 Supervisor mode memory pages

16 Kernel mode memory pages

8 pages in each mode for instructions

8 pages in each mode for data

bPage lengths from 32 to 4096 words

each page provided with full protection and relocation
transparent operation

4 modes of memory access control

memory access to 2 million words (4 million bytes)

Virtual Addressing

When the -PDP-11/68 Memory Management Unit is operating, the normal
16 bit direct byte address is no longer interpreted as a direct
Physical Address (PA) but as a Virtual Address (VA) containing
information to be used in constructing a new 22-bit physical address.
The information contained in the Virtual Address (VA) is combined
with relocation information contained in the Page Address Register
(PAR) to yield a 22-bit Physical Address (PA). Using the Memory
Management Unit, memory can be dynamically allocated in pages cach
composed of from 1 to 128 integral blocks of 32 words.

- 11/68

ADDRESS SPACE
VIRTUAL
INSTRUCTION/DATA PAGE 5
ADDRESS SPACE
2
— PaR 7
PAR & PAGE &
PAR 3
——] PAR 4 MGE 7
PAR 3 \ '
PAR 2 PAGE ¢
PAR
PAR O .
VIRTUAL ADDRESS PAGE ADDRESS SEGISTERS PMYSICAL ADORESS
116 BITS) (22 aIrs)

PAR -~ Page Address Register
Figure 2-3 Virtual Address Mapping into Physical Address

The starting physical address for each page is an integral
multiple of 32 words, and each page has a maximum size of 4096
words. Pages may be located anywhere within the Physical Address
space. The determination of which set of 16 pages registers is
used to form a Physical Address is made by the current mode of
operation of the CPU; i.e., Kernel, Supervisor or User mode.

Interrupt Conditions under Memory Management Control

The Memory Management Unit relocates all addresses. Thus, when it
is enabled, all trap, abort, and interrupt vectors are considered to
be in Kernel mode Virtual Address Space. When a vectored transfer
occurs, control is transferred according to a new Program Counter
(PC) and Processor Status Word (PS) contained in a two-word vector
relocated through the Kernel Page Address Register Set. Relocation
of trap addresses means that the hardware is capable of recovering
from a failure in the first physical bank of memory.

When a trap, abort, or interrupt occurs the "push" of the old PC,
old PS is to the User/Supervisor/Kernel R6 stack specified by CPU
mode bits 15,14 of the new PS in the vector (bits 15,14: 00 =
Kernel, 0l = Supervisor, 1l = User). The CPU mode bits also deter-
mine the new PAR set. In this manner it is possible for a Kernel mode
program to have complete control over service assignments for all
interrupt conditions, since the interrupt vector is located in
Kernel space. The Kernel program may assign the service of some of
these conditions to a Supervisor or User mode program by simply
setting the CPU mode bits of the new PS in the vector to return
control to the appropriate mode.

Construction of a Physical Address

All addresses with memory relocation enabled either reference informa-
tion in instruction (I) Space or Data (D) Space. I Space is used for
all instruction fetches, index words, absolute addresses and

immediate operands, D Space is used for all other references. I Space
and D Space each have 8 PAR's in each mode of CPU operation, Kernel,
Supervisor, and User. Using Memory -Management Register #3, the
operating system may select to disable D space and map all references
(Instructions and Data) through I space, or to use both I and D

space.

2.4-2

The basic information needed for the construction of a Physical
Address (PA) comes from the Virtual Address (VA), which is
illustrated in Figure 2-4 and the appropriate PAR set.

18 o__w e
! are I oF i
ATIVE PAGE T DISPLACEMENT FIELD
i HELD.
Figure 2-4 Interpretation of a Virtual adé-czs

The Virtual Address (VA) consists of:

1. The Active Page Field (APF). This 3-bit field determines
which of eight Page Address Registers (PARO-PAR7) will be
used to form the Physical Address (PA).

2. The Displacement Field (DF). This 13-bit field contains an
address relative to the beginning of a page. This permits
page lengths up to 4K words (213 = 8k bytes). The DF is further
subdivided into two fields as shown in Figure 2-5.

174 - 2]

L‘ . L] { 018

BLOCK NUMBER DISPLACEMENT IN BLOCK

Figure 2-5 Displacement Field of Virtual Address

L_I°

The Displacement Field (DF) consists of:

1. The Block Number (BN). This 7-bit field is interpreted as the
block number within the current page.

2; ‘The Displacement in Block (DIB). This 6-bit field contains the
displacement within the block referred to by the Block Number
(BN) .

The remainder of the information needed to construct the Physical
Address comes from the 16-bit Page Address Field (PAF) (the Page
Address Register (PAR)) that specifies the starting address of the
memory page which that PAR describes. The PAF is actually a block
number in the physical memory; e.g., PAF = 3 indicates a starting
address of 96 (3 x 32) words in physical memory.

The formation-of the Physical Address (PA) is illustrated in
Figure 2-6.

The logical sequence involved in constructing a Physical Address (PA)
is as follows:

1. Select a set of Page Address Registers depending on the space
being referenced.

2. The Active Page Field (APF) of the Virtual Address is uscd to
select a Page Address Register (PARO-PART) .

3. The Page Address Field (PAF) of the selected Page Address

Register (PAR) contains the starting address of the currently
active page as a block number in physical memory.

2.4-3

4. The Block Number (BN) from the Virtual Address (VA) is added to
the Page Address Field (PAF) to yield the number of the block in
physical memory (PBN-Physical Block Number) which will contain
the Physical Address (PA) being constructed.

5. The Displacement in Block (DIB) from the Displacement Field (DF)
of the Virtual Address (VA) is joined to the Physical Block
Number (PBN) to yield a true 22-bit PDP-11¥j Physical Address

(PA).
u 2
VRTUAL ADORESS { i
18 3
o —
- I3 3 -
OFFSET IO PAGE (VAI { N
2|' 1)
m + [d N

Figure 2-6 Construction of a Physical Address

Management Registers

The PpDP-11/68 Memory Management Unit implements three sets of 32
sixteen bit registers. One set of registers is used in Kernel mode,
another in Supervisor, and the other in User mode. The choice of
which set is to be used is determined by the current CPU mode
contained in the Processor Status word. Each set is subdivided into
two groups of 16 registers. One group is used for references to
Instruction (I) Space, and one to Data (D) Space. The I Space

group is used for all instruction fetches, index words, absolute
addresses and immediate operands. The D Space group is used for all
other references, providing it has not been disabled by Memory
Managements Register #3. Each group is further subdivided into two
parts of 8 registers. One part is the Page Address Register (PAR)
whose function has been described in previous paragraphs. The other
part is the Page Descriptor Register (PDR). PARs and PDRs are
always selected in pairs by the top three bits of the virtual
address. A PAR/PDR pair contain all the information needed to describe
and locate a currently active memory page.

The various Memory Management Registers are located in the upper-

most 4K of PDP-11 physical address space along with the UNIBUS I/0
device registers.

2.4-4 11/68

T
{ [PROCESS STATUS WORD f

15 N 4
] LA v
) XERNEL {00) SUPERVISOR {01} USER (1)
PAR POR PAR POR © PAR | pDR
T ' :
1
4 I SPACE
i
N
mr roR PAR POR PaR POR

D SPACE

Figure 2-7 Active Page Registers

Page Address Registers (PAR)

The Page Address Register (PAR) contains the Page Address Field
(PAF), 16-bit field, which specifies the starting address of the
page as a block number in physical memory.

- 0l
‘ . PAF 1
4 e A ’

Figure 2-8 Page Address Register

The Page Address Register (PAR) which contains the Page Address
Field (PAF) may be alternatively thought of as a relocation
register containing a relocation constant, or as a base register
containing a base address. Either interpretation f#ndicates the
basic importance of the Page Address Register (PAR) as a relocation
tool.

Page Descriptor Register

The Page Descriptor Register (PDR) contains information relative
to page expansion, page length, and access control.

18 4 3 2 0
Ieyp PLF W ED| AcF

Figure 2-9 Page Description Register

2.4-5
11/68

Access Control Field (ACF)

This three-bit field, occupying bits 2-0 of the Page Descriptor
Register (PDR) contains the access rights to this particular page.
ACF <@> is treated as a don't care condition. The access codes or
"keys" specify the manner in which a pPage may be accessed and
whether or not a given access should result in an abort of the cur-
rent operation. A memory reference which causes an abort is not
completed. Aborts are used to catch "missing page faults", prevent
illegal access, etc.)

In the context of access control the term "write" is used to
indicate the action of any instruction which modifies the contents
of any addressable word. "Write" is synonymous with what is usually
called a "store" or "modify" in many computer systems.

The modes of access control are as follows:

ACE Key Mode

00X 0] non-resident abort all accesses

olx 2 read only abort on write attempt
10x 4 (unused) abort all accesses

11x 6 read/write no system abort action

It should be noted that the use of I Space provides the user with
a further form of protection, execute only.

Access Information Bits

W Bit (bit 6) -- This bit indicates whether or not this page has been
modified (i.e., written into) since either the PAR or PDR was

loaded. (W = 1 is Affirmative). The W Bit is useful in applications
which involve disk swapping and memory overlays. It is used to
determine which pages have been modified and hence must e saved

in their new form and which pages have nct been modified and can be
simply overlaid. :

Expansion Direction (ED)

Bit 03 of the Page Description Register (PDR) specifies in which
direction the page expands. If ED = 0 the page expands upwards

from Block Number O to include blocks with higher addresses; if ED =
1, the page expands downwards from Block Number 127 to include
blocks with lower addresses. Upward expansion is usually used for
pProgram space while downward expansion is used for stack space.

Page Length Field (PLF)

This seven-bit field, occupying bits 14-8 of the Page Descriptor
Register (PDR), specifies the block number, which defines the
boundaryof that page. The block number of the Virtual Address is
compared against the Page Length Field to detect Length Errors. An
error occurs when expanding upwards if the block number is greater
than the Page Length Field, and when expanding downwards if the
block number is less than the Page Length Field.

11 /769

Bypass Cache (BYFP) (PDR <15>)

When the BYP bit is set in a PDR, and relocation is enabled,

any CPU reference to the Virtual page mapped by that PAR/PDR

pair will go directly to main memory. If read or write hits

occur, the contents of that location in cache will be invali-
dated. Read or write misses will not distdgb the contents of
the cache.

When relocation is disabled, this bit will have no effect on
the cache.

This read/write bit is set and cleared like all other bits in
the PDR.

2.4-7

11/68

’

Reserved Bits

Bits 7, 5, & 4 are spare and are always read as 8, and should
never be written. They are unused and reserved for possible future
expansion.

Fault Recovery Registers

Aborts and traps generated by the Memory Management hardware are
vectored through Kernel virtual location 250, Memory Management
Registers #0, #1, #2, and #3 are used in order to determine why

the abort occurred, and allow for easy program restarting. Note
that an abort to a location which is itself an invalid address

will cause another abort. Thus the Kernel program must insure that
Kernel Virtual Address 250 is mapped into a valid address, other-
wise a loop will occur which will require console intervention.

Memory Management Register #§ (MMR$) (status and error indicators)

MMRO contains error flags, the page number whose reference caused
the abort, and various other status flags. The register is
organized as shown in Figure 2-10.

Setting bit O of this register enables address relocation and error
detection. This means that the bits in MMRO become meaningful.

Bits 15-13 are the error flags. They may be considered to be in a
"priority queue" in that "flags to the right" are less significant
and should be ignored. That is, a "non-resident" fault-service
routine would ignore length, access control, and memory management
flags. A "page length" service routine would ignore access control
and memory management faults, etc.

Bits 15-13 when set (error conditions) cause Memory Management to
freeze the contents of bits 1-7 and Memory Management Registers #]
and #2. This has been done to facilitate error recovery.

These bits may also be written under program control. No abort
will occur, but the contents of the Memory Management Registers
will be locked up as in an abort.

15 14 13 12

 OITEEE
M:Eﬁon)—"—"
ABORT- READ ONLY

ACCESS VIOLATION

NCT USED
NOT USED

MAINTENANCE MODE.

PAGE MODE
PAGE ADDRESS SPACE 1/0
PAGE NUMBER
ENABLE RELOCATIO

Figure 2-10 Format of Memory Management
Register #Q (MMRQ)

2.4-8
11/68

Abort -- Non-Resident, Bit 15

Bit 15 is the "Abort -- Non-Resident” bit. It is set by attempting

to access a page with an Access Control Field (ACF) key equal to O,

3, or 7. It is also set by atﬁempting to use Memory Relocation with
a processor mode of 2.

Abort -- Page Length, Bit 14

Bit 14 is the "Abort Page Length" bit. It is set by attempting to
access a location in a page with a block number (Virtual Address
bits, 12-6) that is outside the area authorized by the Page Length
.Field (PLF) of the Page Descriptor Register (PDR) for that page.
Bits 14 and 15 may be set simultaneously by the same access attempt.
Bit 14 is also set by attempting to use Memory Relocation with a
processor mode of 2,

Abort -- Read Only, Bit 13

Bit 13 is the "Abort -- Read Only" bit. It is set by attempting

to write in a "read-Only"” page. "Read-Only" page has an access key
of 2 (ACF = g1Xx)

Bits 7, 9, 10, 11, and 12

Bits 7, 9, 10, 11, and 12 are Spare and are always read as 0, and
should never be written. They are unused and reserved for possible
future expansion. :

Maintenance/Destination Mode, Bit 8

Bit 8 specifies that only destination mode references will be
relocated using Memory Management. This mode is only used for
maintenance purposes.

Processor Mode, Bits 5 & 6

Bits 5 and 6 indicate the CPU MODE (Kernel/Supervisor/User)
associated with the page causing the abort (Kernel = 00, Supervisor =
01, User = 11, Illegal Mode = 10). If an illegal mode is

specified, bits 15 and 14 will be set.

Page Address Space, Bit 4

Bit 4 indicates the type ‘of address space (I or D) the Unit was in
when a fault occurred (0 = T Space, 1 = D Space). It is used in
conjunction with bits 3-1, Page Number.

Page Number, Bits 3 to 1

Bits 3-1 contain the Page number of a reference causing a Memory
Management fault. Note that pages, like blocks, are numbered from
0 upwards. :

Enable Relocation, Bit 0

Bit O is the "Enable Relocation” bit. When it is set to 1, all
addresses are relocated by the unit. When bit 0 is set to 0 the
Memory Management Unit is inoperative and addresses are not
relocated or protected.

Memory Management Register #1 (MMR1)

MMR]l records any autoincrement/decrement of the general purpose
registers, including explicit references through the PC. MMRL is
cleared at the beginning of each instruction fetch. Whenever a
general purpose register is either autoincremented or autodecremented
the register number and the amount (in 2s complement notation) by
which the register was modified, is written into MMRIL.

The information contained in MMR1 is necessary to accomplish an
effective recovery from an error resulting in an abort. The low
order byte is written first and it is not possible for a PDP-11
instruction to autoincrement/decrement more than two general
purpose registers per instruction before an "abort-causing"
reference. Register numbers are recorded "MOD 8"; thus it is up to
the software to determine which set of registers (User/Supervisr/
Kernel -- General Set O/General Set 1) was modified, by determining
the CPU and Register modes as contained in the PS at the time of the
abort. The 6-bit displacement on R6(SP) that can be caused by the
MARK instruction cannot occur if the instruction is aborted.

15 "0 a_ 7 5 2

L l l []

AMOUNT CHANGED REGISTER AMOUNT CHANGED STER
@s C_CM?TEMENYE NUMBER (2'S COMPLEMENT) sg?&n

Figure 2-11 Format of Memory Management Register #1 (MMR1)

Memory Management Register #2

MMR2 is loaded with the 16-bit Virtual Address (VA) at the beginning
of each instruction fetch. MMR2 is Read-Only; it cannot be written.
MMR2 is the Virtual Address Program Counter.

Memory Management Register #3

The Memory Management Register #3 (MMR3) enables or disables the

use of the D space PAR's and PDR's and 22-bit mapping and UNIBUS
mapping. When D space is disabled, all references use the I space
registers; when D space is enabled, both the I space and D space
registers are used. Bit O refers to the User's Registers, Bit 1

to the Supervisor's, and Bit 2 to the Kernel's. When the appropriate
bits are set D space is enabled; when clear, it is disabled. BRit 03
is read as zero and never written. It is reserved for future use.
Bit 04 enables 22-bit mapping. If Memory Management is not enabled,
bit 04 is ignored and 16-bit mapping is used.

2.4-10
11/68

9b1t<4> is clear ana memory Management 1ls enabled (MMx2=1), the
processor uses 16~=pit mapping, If Bit<4> (s set and Memorv
Management 1s enabled, the processor uses 22=pit mapplinc, wit<3>
is set to enable relocation of the UWIBUS “Map; the cit is
cleared €0 disable relocation, Bits<15:7> are uynused, on
initialization this register is cleared and only i~space is used,

Memory management Register 3 17 772 576

SI1LL11P0 0700720720007 70707000077777%

: /771
SI010707000070707710040007770770777771777] !

: :
: 17774 {

§ o= o
R o= e

15 14 13 12 11 19 9 8§ 7 6 5) 3 2 1 i/
[]] []]
! ! ! ! ! !
Disable v¥rite RBuffering ! ! i ! ! !
Enaple Unibus Map ! ! ! ! :
Enable 22=Bit Mavping i) ! !
Enable Kernal D Space : — ! ! !
£nable Supervisor [Space . S | !
Enaple User D Space i
FOFMAT OF MEMORY MANAGEMENT REGISTER 3
pit State Cperation
6 e) Enables write ouffering
1 Disables write putfering
5 @ Unibus #ay relocation disablea
1 Unious relocation enapled
4 @ Enaple 12 pit mapping 1if
Bit<®> of HuRE = 1
1 Enable 22 hit mapging if

bit<y> of “WMRL = 1

p 1 Enaple Kernal D Scace
1 1 gnable Supervisier D Space
) 1 Enable lUser D Srace

PDP 11/08 write Buffering (MME3I<E2)

The PpP11/6d will buffer write operations and continue grocessina
using cache data in its normal mode of operation., The Power uy2
ate will nave this function -enabled, ahen enapled, write
Qterinq will pe automaticallv disablea in operatlions performing
1 writes to the 1I/0 Ppage (beth internal and external),
Flushing of the puffer will occur in all direct or inoirect
references to tne Processor Status word (Traps. KITL, RTL,
interrupts; MOV X,PSw) such that all memecry errors #ill pe
associated with the process tnat initiated the write,

2.4-11

Instruction Back-up/Restart Recovery

The process of "backing-up" and restarting a partially completed
instruction involves:

1. Performing the appropriate memory management tasks to
alleviate the cause of the abort (e.g., loading a missing
page, etc.).

2. Restoring the general purpose registers indicated in MMR1l to
their original contents at the start of the instruction by
subtracting the "modify value" specified in MMRI1.

3. Restoring the PC to the "abort-time" PC by loading R7 with the
contents of MMR2, which contains the value of the Virtual PC
at the time the "abort-generating" instruction was fetched.

Note that this back-up/restart procedure assumes that the general
purpose register used in the program segment will not be used by
the abort recovery routine. For back-up restart procedures for
Commercial Instructions (CIS) see DEC STD 1l68.

Clearing Status Registers Following Trap/Abort

At the end of a fault service routine bits 15-12 of MMRO must be
cleared (set to 0) to resume error checking. On the next memory
reference following the clearing of these bits, the various
Registers will resume monitoring the status of the addressing
operations. MMR2 will be loaded with the next instruction
address, MMR1 will store register change information and MMRO will
log Memory Management Status information.

2.4-12

11/68

Multiple Faults

Once an abort has occurred, any subsequent errors that occur will

not affect the state of the machine.
MMRO through MMR2 will always refer to the first abort that it

detected.

In the case that an abort occurs after a trap, but in the same
instruction, only one stack operation will occur;

The information saved in

PS at the time of the abort will be saved.

REGISTER
Memory Mgt Register #O(MMRO
Memory Mgt Register #l(mm;

Memery Mgt Register #2(MM
Memary Mgt Register #:«ng

Uur | Space Descriptor Register (UISDRO)

User | Space Descriptor Register (UIbR7)
User D Space Descriptor Register (UDSDRO)

User D Space Descriptor Register (UDSDR?)
User | Space Address Register (UISARO)

User | Space Address Register (UISAR7)
User D Space Address Register (UDSARO)

User D Space Address Register (UDSARY) .
Supervisor | Space Descriptor Register (SISDRO)

Supervisor | Space Descriptor Register (SISDR7)
Supervisor D Space Descriptor Register (SBPRO)

Supervisor D Space Descriptor Regi-.ter (SDSDR?7)
Supervisor | Space Address Register (SISARO)

Supervisor 1 Space Address Register_ (SISAR7)
Supervisor D Space Address Register (SDSARD)

Supervisor D Space Address Register (SDSDR7)
Kernel | Space Descriptor Register (KISDRO)

i(orml | Space Descriptor Register (Kleﬂnn

2.i-13

ADDRESS

17 7771572
17 777574
17 777576
17 772516

17 777600

17 777616
17 777620
17 777636
17 777640

17 777656
17 777660
17 777676
17 772200
17 772216
17 772226

17 772236
17 772240

17 772256
17 772260

17 772276
17 772300

17 772316

and the PC and

11/68

Kemei D Space Descriptor Register (KDSDRO)

Kermel D Space Descriptor Register (KDSDR7)
Kernel | Space Address Register (KISARQ)

Kemel | Space Address Register (KISARY)
Kemel D Space Address Register (KDSARD)

komel D Space Address Register (KDSAR7)

2.4-14

17 772320

17 772336
17 772340

17 772356
17 772360

17 772376

5 Cache/Memory Operations
CPU MEMORY REFERENCE

Cache memory within the 11/68 operates synchronously with
CPU memory reterences, Virtual address information from the
CPU 1s applied to maln cache and, in parallel, to the tMemory
Management unit as described above, Tne CPU alwavs looks
for data in cache memory first wnen attempting & read before
accessing main memory, If the data 1s in cache, a nit
occurs and main memory is not accessed, Four bytes of data
are returned to the CPU vlia the 32 bit internal bus in time
for latching at the end of the microstate in whicn the bus
code was issued, On a miss, the CPU clock is suppressed and
two words are fetched from bac¢king store and placed on the
internal bus. The clock is then The data and tag of a cache
location are updated to correscond to the data cbtalned in
the access to main memory (allocation), Durina a write into
memory, 1£ a hit occurs, poth main memory and cache are
updated, If a miss occurs, main memory is vwritten, put
cache 1s not allocated becayse of the prevelence ot single
word writes which are not compatable with the plock size of
two,

HIT or MISS OPERATIQNS

.gcessor Operation Cache ¥ain Memory
Read
Hit Ne Change ~#0 Change
Miss Allocated x0 Change
Write
Hit Updated Updated
Miss NO Change Upaated

DMA Operations

--------.-‘-‘----.----.-..----.-----------.-------.--.-------------

Read
Hit (not checked) No Change ne Change
Miss (not checked) No Change N0 Change
Arite
Hit Invalidated tipdated
Miss No Change lUpgated

Allocated= The data and tag of the cache location is chancegq

to correspond to the main memory location,

Updated= The data in cache or main memory 1is modified or
,Visedn

nvalidated=~ valid bit in the cacne location is cleared to

show tnat the data iIs stale and does not correspond to the
data in main memory,

2.5-1

CACHE MEMORY FORMAT

, 1OLK 2WA4%

The size of the cache memory is -¢9Y% words (B399 opytes),
organized as a twoeway associative cache with two=wordg
blocks, This means there are two sets in the cache; each
set contains plocks of data, and each plock contains
two PDP 11 w#ord: ."Each block also has a virtuai adcress tagq
field and a rage Address Field (PAF) of .the Page Adaress
Register (PAR) corresponding to the PAF accessed by address
pits<15:13> of the virtual address during allocation, Tnis
information uniguely determines the physical address in main
memory where the original copy of this data block resides,
Tne data £rom main memory can be stored within the cache |{n
one index oposition qetermined by its virtual asddress, The
1¥ bit index field (bits<t‘:2>) deternine wnich element of
tne array will contaln the data (but 1t can be either in sSet
@ or Set 1), '

15 10 (& 42 ¢1 v

! ! ! ! :

! VIRTUAL TAG { INDEX ! wORD! BYTE!

Virtually Addressed Data Cache ¥ormat

The elements of the cacne must. store not only the data, bnut
also the address identification, Since the index position
itself implies part of the address, only the high address
field (called Tag and FAF data) nmust be stored, fhe
combination of the virtual and PAF tag plus index gives the
address of the two=word block in main memory., The lowest
two bits in the address select the particular word in the
block, and the bpyte (if needed), There are two places in
the cache where any block of data can be stored, a
particular index position in either Set ¥ or Set 1. Random
selection determines 1into which set the information {is
placed, overwriting the previous data, Anotner it 1is
needed within the cache to determine if the block has been
locaded with data, wWwhen power 1s first applied, the cache
data is invalid, and the valid bit for each data block is
cleared, #hen 4 particular bleck location is updated, the
assoclated valid pit is set to indicate good data, The
following figure shows the organization for a single block
-0f data within a set, iote that gata has bvte parity, and
that the non=data part called Tag contains a ﬂ?bit hign
order virtual address field (PAF), a 16 bit Page Address
Bheld, a valld bit and 3 parity pits.

2.5-2

3 16 & | 8 1 8 1 ;] 1 8 i
bits bits bits nit pits blt bits it cits it pits nit

vy { VIRTUALY: 1} v v L :
! Pl PAF | TAG ! V I! BYTE3 ! P | BYTE2 ! P ! 3YTE] ! P ! 3YTEZ | p
Pl | FIELD ¢ 1! T :

LA A B B A L A B E L L & A 2. 20 R 2 L 0 2 A &2 L 2 R 32 X X R LR K 2 £ 2 ¥ E F B E X F B ¥ F N R T R R R R g e gregnuagpepueguagey

.
.
Py
Y

]
-
t
.
i
.
-

2.5-3

DMA OPERATIONS

Exterior DMA memory references that write intc memory are
monitored ny the cacne control logic, Physical address
bits<f :2> are used as an index to access a Physlcal Tag
Store, Tnis physical cache tracks the main cacne memory ana
contains the physical address tag of each location that nas
been allocated, In addition, the pnysical tag store
contains the corresponding virtual index field which existed
when the physical address tag was stored from the virtual
address bits <#l:2> wnich was used during allocation therebny
always permitting a backward reference into the
corresponding location in the virtua addressed data cache,
If the tag bits of the physical address from a OUMA write
matches tne address bits in the "physical" tag store, then
the cache control will "steal" a cvcle from main cacne and
invalidate the location, To provide the necessary cross
reference petween vpnysical and virtual, the virtual index
field is used to address the main data cache, Tt tne tag
blts of the pnysical address used in the D4Aa write operation
do not match the aadress bits in tne physical tag store,
then noe time 1s taken from processor malh cache operations
and no invalidation is necessary,

VIRTUAL InDEX

3 1 19
bits bit pits b1ts
! PAR IVALID! PHYSICAL TAG !
| ITY ! ! !

.----‘-------------------------------‘,-.---..-'---------.-.-------.Q--.---'---’

PHYSICAL TAG DATA FORMAT

2.5-4

1]
.
]
L]
i
-

Cache Control Regikter 17 777 746

VY
V222 S S S V72 S W

15

Write Wrong

Physical
Tag
Parity .

Valid store
Vvalid store
IN Progress ammeeem—e=!

Arite Wrong Tag Parity ewee-
Bypass Cache
Cache Flush
Parity Abort Enable
Write Wrong Data Parity
Force Replacement Set 1
Force Replacenent Set @
Force Miss set 1

.zce Miss Set @

able Traps

§ o= 0=
§ e 0=
] o= o=
§ o= o~

§ o= o=
[]
[}

Bt B B Bem m Som G fem Bum B Bn Hes Wes 0= w] |

Bwe P Bws Do Wt B B B Bow Jon Pun Suw S $o= 2 [N)

B B Ben G Bem e Buo Bam Bt Bn Bus Gue B @em W= wem (O)

14 13 12 11 1o 9
1

' []
.

1
.
]
.
1
.

Bas Pos Pus Wem Bor P Pen G

Bme Qe e Pon Gom Pun P B

;
!
:
!
l
i
!
!
!
!

B @ Pom P P Hum P G Gow G Sem W

B B Bom Geam G Bew Bus Gws P P Bue m Som (X .

Bow B0s Bt Bes Hem Bas Bus Bom fum G Qe Bum Bem Ben e B B By |

Bem @ Gn Bam dm B A P B B G WS G G Gre B em = (n) |

Bees G G e B B Bur Bas P B Qen Qe P Sew B fom S o= 2w N) §

17/7:
17771

1

CCR<14> wWrite Wrong Physical Tag Parity

This bit is reads/vwrite and when set causes tag
parity bits to be written witn wrong parity on CPRU
read misses, A parity error will thus occur on the
next read miss allocation/invalidation cvcle using
tnis location in the physical tag store, A4 parity
error will also occur in the invalidation cycle on
a DMA write hit to this location in the ohysical
tag store,

CCR<13> Valid Store In Use

This bit controls which set of valid store bits s
currently being used to determine the validity of
the contents of the tag store memory, It is read
only and |is complemented each time that the cache
ls flushed, When set valid plt B 1s is use, when
clear valid bit A is in use,

2.5-5

A Gee G B hem e G o Bom Bt Brm e Bt Dum B G Bem G Wiee om0

1
.
]
.
-

CCR<12> Vvalid Clear In Progress

CCR<16>

CCR<29>

CCRLOE>

CCR<@7>

CCR<@6>

This bit is read only and is set to indicate that
the cache is currently In the process of clearing a
valid store bit, The clear cvcle occurs on power
up and when the £flush cache bit s set, The
hardware clear cyclie will take approximately Z?usec
to be accomplished, While a valid store set is
-being cleared, the other set is in use allowing the
cache to continue functioning,

write Wrong virtual Tag Parity

This bit is read/write and when set causes tag
parity bits to be written with wrong paritvy on CPRU
read misses and write hits, A vparity error will
thus occur on the next access to that locaction,

Unconditional Cache RBRyrass

This bit is read/write, Wnen set, all references
to memory py the CpPU will be forced to go te main
memory, Read and write hits will result in
invalidation of those 1locations in the cache and
misses will not change the contents.

Flush Cache

This bit is write only, It will always te read as
L3 LI writing a "i" into this location will cause
the entire cache contents to be declared invalid,
writing a "@" jinto this oit will have no etfect,

Parity Error Abort

Tnis bit is readswrite and controls response of the
cache to a parity error, when set a cacne parity
will cause the cache reference tec be aberted and
trap to vector 114, Wnen cleared this bit inhioits
the abort ana enables an interrupt to parity error
vector 114 depending on tne condition of the traps
enable bit CCR<Zo>,

Arite Wrong Parity Data
This bit is readswrite and when set causes hign and
low parity bytes to be written with wrong parity on

all update cycles, 1hls will cause a cache parity
error to occur on the next access to that location,

2.5-6

CCR<35> Force Replacement Set 1
Setting this bit forces data reolacement within Set
1 in the cache on a read miss by maln menmory,
CCR<?4> Force Replacement Set ¢
setting this bit forces daté replacemnet within set
@ in the cache on a read miss oy main memory,
CCR<@3> Force Miss Set 1
Setting this bit innhibits nits from occurring €rom

Set 1 forcing read references to occur from main
memory.

CCR<22> Force Miss Set ¥

Setting this bit innhibits nhits from occurring from
Set @ forecing read references to occur from main
memory.,

CCR<2¥> Disable Cache Parity Interrupt

This bit is readswrite, when set this bit inhibits
an interrupt from occurring on cache parity errors
when cache parity abort 1is disabled (CCR<47>=i),
All references resulting in a parity error with
abort disabled will result in a force miss,

CCR<@7> CCR<@©¥>

4] Force miss and trapo to 114
%] 1 Force miss only
1 X Roort and Trap to 114

2.5-7

Cache/Memory System Error Register 17 777 744

H /0770777747277 7/77277777777477 ! ! H ! ! ! 1777}
! S17707770¢77777772477727777777) 1 ! ! ! ! ! 17771
15 14 13 12 11 1@ 9 8 7 o) e} 4 3 2 1 @

! i f ! ! ! ! !
CPU i i i { ! ! { i
Aport ! ! i H i i i 4
‘ i } ! ! i i i
Cache Data Error Set | i H H H i i i
Cacne Data Error Set o i i i i { i
Virtuyal Tag Parity Error Set 1 H ! 1 ! !
virtual Tag Parity Error Set 0 ! i ! !
Physical Tag Parity Set 1} ! ! i
Physical Tag Parity Set ¢ — i i
]

Main Memory bata Error

Bit<15> CPU Abort
Set 1f an error occurs which causes a processor
memory reference to be aborted due to cacne parity
errors or main memory errors and timeouts,

Bilt<¥7> Cache Data Error Set 1

This bit is set if a parity error is detected in the
data field of Set 1 of the cache,

Bit<@6> Cache Data Error sSet ¢

This pit is set if a parity error is detected in the
data fleld of Set @ of the cache,

Bit<d5> virtual Cache Tag Parity Error set 1

Ihis pit is set if a parity error is detected in the
Tag field of the Virtual cache store of Set 1,

Bit<@4> Virtual Cacne Tag Parity Error set g
This bit is set if a paritv error {s aetected in the
Tag field of the virtual Cache Store of Set 2,
L<03> Cache Phys;cal Tag Parity Error Set 1

This bit is set if a parjity error is detected {n the
Tag fleld of the Physical Cache store of Set |,

2.5-8

8it<@2> Cache Physical Tag Parity Error Set @

Bit<@ai>

This bit is set if a parity error is detected in the
TAg field of the Physical Cache Store of SET ¢,

Main Memory Data Error

This pit Is set 41if a non=correctable error 1is

received from a main memory reference oy the
pProcessor.,

e

o
™,

S

Note: Is there a né
a4 physical tag store
rescolved with dia
systems, Aff
Error R

tinguish the socurce ot
ity error ??7?? 1Issue to be
stics™~and software operating

s CCR<gl> d Cache/pemory Systemn
r Bit<i2>,

2.5-9

High Error Adcress Register 17 777 742

! /7770777272777 727777777777777777% High Error !
Y Cycle L//7177777774/7/7777277/7772777777/77¢77) hddress Bits H
15 14 13 12 11 19 9 8 7 6 S 4 3 2 1 7]
Low Error Address Register 17 777 740
I o 1
! Low Error address Bits 1
15 14 13 12 11 19 9 8 7 6 5 4 3 2 1 J

The High ana Low Error Address rReglisters 1log the 2¢=nit
physical address being accessed when a4 memory reference
error occurred, All bits are read only, The pits are
undetermined after power up and are not affected by a

sole start or a RESET instruction, The Low Errer Address

ister contains the low order 16 pits of the pnysical
address, The High Error Address Reglster contains the upper
6 bits of the physical address and the type ot cycle being
performed when the errcr occurred,All CPU cache/memory
references that result in an error will have the nhysical
address logged in tne ERROR AUDRESS REGISTER, A CPU memory
reference resulting 1in a CPU ABORT will cause the ERKOK
ADDRESS REGISTER to lock up until the condition s cleared
in the Memory System Error Reqgister Bit<15>, Rits<15:14>
define the type of memory cycle performed wnhen the error
occurred,

Bit 15 ' Bit 14 Function
') 2 READ
) 1 READ PAUSE
1 2 WRITE
1 1 WRITE BYTE

(May expand to Bit<13> due ¢to additional bus orerations
performed by the 11/68),

2.5-10

Section 3

Floating Point Processor/Instructions

FLOATING POINT PROCESSOR

. INTRODUCTION

The PDP-11/68 contains an integral Floating Point Instruction set sup-
ported by microcode in the base machine, and by the optional FP11 -
Floating Point Processor. This optional unit fits into the pro-
cessor backplane and provides a high performance execution of the
Floating Point Instruction set.

Both units provide significant improvement in execution over software
subroutine implementation of floating point.

This chapter discusses the optional FP11 Floating Point Processor.
Format and instruction information are the same for the integrai floating
point with the exceptions aiready noted The sequence of
operation differs as the FP11 Floating Point Processor can operate in
parallel with the base machine.

The features of the FP11 unit are:
e 17 digit accuracy
e Overlapped operation with the central processor
o High speed
* Singie and double precision (32 or 64 bit) floating point modes
Flexible addressing modes
Six 64-bit floating point accumulators
Error recovery aids

OPERATION
The Floating Point instruction set is an integral part of the Central Pro-
cessor. it operates using similar address modes, and the same memory
management facilities provided by the Memory Management Option, as
the Central Processor. Floating Point Processor (FPP) instructions can

reference the floating point accumulators, the Centrai Processor’s general
registers, or any location in memory.

When, in the course of a program, an FPP Instruction is fetched from
memory, the FPP wiil execute instruction in parailet with the CPU con-
tinuing with its instruction sequence. The CPU is delayed a very short
period of time during the FPP Instruction’s Fetch operation, and then is
free to proceed independently of the FPP. The interaction between the
two processors is automatic, and a program can take full advantage of
the parallel operation of the two processors by intermixing Floatmg Point
Processor and Central Processor instructions.

Interaction between Floating Point and Central Processor instructions is
automatically taken care of by the hardware. When an FPP Instruction
is encountered in a program, the machine first initiates Floating Point
handshaking and caiculates the address of the operand. It then checks
the status of the Floating Point Processor. If the FPP is “‘busy,” the CPy
will wait until it is ‘“done’” before continuing execution of the program,
As an example, consider the following sequence of instructions:

LDD(R3)+-,AC3 ;Pick up constant operand and place it

in AC3
ADDLP: LDD(R3) +, ACO ;Load ACO with next value in table

MUL AC3,ACO ;and muitiply by constant in AC3

ADDD ACO,AC1 ;and add the result into AC1

SOB R5,ADDLP ;check to see whether done

STCDI AC1@R4 ;done, convert double to integer and
store

in the above example, the Floating Point Processor will execute the first
three instructions. After the ADDD” is fetched into the FPP, the CPU
will execute the ‘‘SOB’, calculate the effective address of the STCDI
instruction, and then wait for the FPP to be '‘done” with the “ADDD"
before continuing past the STCD! instruction.

As can be seen from this example, autoincrement and autodecrement
addressing automatically adds or subtracts the correct amount to the
contents of the register, depending on the modes represented by the
instruction.

3.1-1

11/68

r

- = —— — S —— S———— ——— —— — — — — t—

ARCHITECTURE

The Floating Point Processor contains scratch registers and six general
purpose accumulators (AC0-AC5).

Each accumulator is interpreted to be 32 or 64 bits long depending on
the instruction and the status of the Floating Point Processor. For 32-bit
instruction only the left-most 32 bits are used, while the remaining 32
bits remain unaffected.

The six Floating Point Accumulators are used in numeric calculations
and interaccumulator data transfers; the first four (ACO-AC3) are also
used for ail data transfers between the FPP and the General Registers or

Memory.

— s et o v—— ——— —— — o— — —— s ot s

FLOATING
POINT
ARITHMETIC
AND
CONVERSION
UNIT

FPP EXCEPTION
CODE
REGISTER

FPP
STATUS
REGISTER

UNIBUS

| A IFEEﬁtmTocessoa
|
|
I
I

CENTRAL .

r_J

PROCESSOR
ARITHMETIC

32-8IT
ACCUMULATOR
~
ACO
ACl
AC2
AC3
AC4
ACS
SCRATCH
64-8iT
ACCUMULATOR

— — — — — —— — —— o—

— e — — — — e

AND
LOGICAL

PROCESSOR
STATUS

UNIT

PROGRAM

POINTER

TO LAST
INSTRUCTION

CAUSING ERROR

GENERAL
REGISTER

FLOATING
POINT
REGISTERS
FOR BASIC

MACHINE

Floating Point Processor and Central Processor
of the PDP-11/68

3.1-2

11/68

FLOATING POINT DATA FORMATS
Mathematically, a fioating point number may be defined as having the
form (2*%K)#f, where K is an integer and f is a fraction. For a non-
vanishing number, K and f are uniquely determined by imposing the
condition 15, < 'f < 1. The fractional part, f, of the number is then
said to be normalized. For the number zero, f must be assigned the
value 0, and the vatue of K is indeterminate.

The FPP floating point data formats are derived from this mathematical
representation for floating point numbers. Two types of floating point
data are provided. In single precision, or Floating Mode, the word is 32
bits long. In double precision, or Double Mode, the word is 64 bits fong.
Sign magnitude notation is used.

Non-vanishing Floating Point Numbers
The fractional part f is assumed normalized, so that its most significant
bit must be 1. This 1 is the ‘‘hidden’* bit: it is not stored in the data
word, but of course the hardware restores it before carrying out arith-
metic operations. The Floating and Double modes reserve 23 and 55
bits, respectively, for f, which with the hidden bit, imply effective word
lengths of 24 bits and 56 bits for arithmetic operations.

Eight bits are reserved for the storage of the exponent K in excess 128
(200 octal) notation (i.e. as K + 200 octal). Thus exponents from —128
to +127 could be represented by O to 377 (octal), or O to 255 (deci-
mal). For reasons given below, a biased EXP of O (true exponent of
—200 octal), is reserved for floating point zero. Thus exponents are
restricted to the range —127 to 4127 inclusive (—177 to 177 octai) or,
in excess 200 (octal) notation, 1 to 377 (octal).

The remaining bit of the floating point word is the sign bit.

Floating Point Zero
Because of the hidden bit, the fractional part is not available to dis-
tinguish between zero and non-vanishing numbers whose fractionat part
is exactly 1/2. Therefore the FP11 reserves a biased exponent of O for
this purpose. And any floating point number with biased exponent of 0
either traps or is treated as if it were an exact O in arithmetic operations.
An exact zero is represented by a word, whose bits are ail O's. An arith-
metic operation for which the resulting true exponent exceeds 177
(octal) is regarded as producing a floating overfiow; if the true expo-
nent is less than —177 (octal) the operation is regarded as producing a
floating underfiow. A biased exponent of 0 can thus arise from arith-
metic operations as a special case of overflow (true exponent = 4C0
octal), or as a special case of underflow (true exponent — 0). (Recall
that only eight bits are reserved for the biased exponent.) The fractional
part of results obtained from such overflows and underflows is correct.

The Undefined Variable
The undefined variable is defined to be any bit pattern with a sign bit of
one and a biased exponent of zero. The term ‘‘undefined variable” is
used, for historical reasons, to indicate that these bit patterns are not
assigned a corresponding floating point arithmetic value. Note that the
undefined variable is frequently referred to as “—0” eisewhere in this
chapter.

A design objective of the FP11- was to assure that the undefined vari-
able would not be stored as the resuit of any floating point operation in
a program run with the overflow and underflow interrupts disabled.
This is achieved by storing an exact zero on overflow or underflow, if
the corresponding interrupt is disabled. This feature together with an
ability to detect a reference to the undefined variable (implemented by
the FIUV bit discussed in the next section) is intended to provide the
user with a debugging aid: if the presence of —0 occurs, it did not resuit
from a previous fiocating point arithmetic instruction.

3.1-3

11/68

Floating Point Data

Floating point data is stored in words of memory as illustrated below.

F Format, single precision

[sj ExP FRA I -L CTION]

1514 . 76 ® []

D Format, double precision

(= e =}

1514 76 [1]]

™][
0 C

3 =%

5

S = Sign of Fraction

EXP = Exponent in excess 200 notation, restricted to 1 to 377 octal for
non-vanishing numbers.

FRACTION = 23 bits in F Format, 55 bits in D Format, + one hidden bit
(normalization). The binary radix point is to the left.

The FPP provides for conversion of Floating Point to Integer Format and
vice-versa. The processor recognizes single precision integer () and
double precision integer long (L) numbers, which are stored in stan-
dard two's complement form:

| Format: .

{] P]
i " PPN i
5149 [+]

L Format:

Is! o]

b i A " "
1514]) Q 15 [¢)

where

S = Sign of Number)
NUMBER = 15 bits in | Format, 31 bits in L Format.

3.1-4

11/68

FLOATING POINT UNIT STATUS REGISTER (FPS Register)
This register provides (1) mode and interrupt control for the floating
point unit, and (2) conditions resulting from the execution of the pre-
vious instruction.

Four bits of the FPS register control the modes of operation:

Single/Double: Floating point numbers can be either single or
double precision.

Long/Short: Integer numbers can be 16 bits or 32 bits.

Chop/Round: The result of a floating point operation can be either
chopped or rounded. The term “chop’” is used instead of “‘trun-
cate’” in order to avoid confusion with truncation of series used
in approximations for function subroutines.

Normal/Maintenance: a special maintenance mode is available.

The FPS register contains an error flag and four condition codes (5 bits):

Carry, overflow, zero, and negative, which are equivalent to the
Processor Status condition codes.

The floating point processor (FPP) recognizes seven ‘‘floating point
exceptions’”:

detection of the presence of the undefined variable in memory
floating overfiow

floating underflow .

failure of floating to integer conversion

maintenance trap

attempt to divide by zero

illegal floating OP code

For the first five of these exceptions, bits in the FPS register are
available to individually enable or disable interrupts. An interrupt
on the occurrence of either of the last two exceptions can be dis-
abled only by setting a bit which disables interrupts on all seven ot
the exceptions, as a group.

Of the fourteen bits described above, five are set by the FPP as part
of the output of a floating point instruction: the error flag and condi-
tion codes. Any of the mode and interrupt control bits (except the
FMM bit) may be set by the user; the LDFS instruction is available
for this purpose. These fourteen bits are stored in the FPS register
as follows:

|

IfER F10 | UNUSE kxuvkxu FWL‘{C Fo FL] rvlswl Fnj' f=z|l Fv

(o]
15 14 13 12 1t 0 9 8 7 6 5 4 3 2 1 0

3.1-5

11/68

BIT
15

14

13
12
11

NAME
Floating Error (FER)

Interrupt Disable (FID)

1. The FID bit is

DESCRIPTION

The FER bit is set by the FPP if

1. division by zero occurs

2. illegai OP code occurs

3. any one of the remaining
occurs and the correspond-
ing interrupt is enabled.

Note that the above action is in-
dependent of whether the FID
bit (next item) is set or clear.

Note also that the FPP never re-
sets the FER bit. Once the FER
bit is set by the FPP, it can be
cleared only by an LDFPS in-
struction (or by the RESET in-
struction described in Section
4.7). This means that the FER
bit is up to date only if the most
recent floating point instruction
produced a fioating point excep-
ception.

If the FID bit is set, all floating
point interrupts are disabled.
Note that if an individual inter-
rupt is simultaneously enabied,
only the interrupt is inhibited; all
other actions associated with the
individual interrupt enabled take
place.

NOTES
primarily a maintenance fea-

ture. It should normally be clear. In particu-
lar, it must be clear if one wishes to assure
that storage of —0 by the FP11 s always
accompanied by an interrupt.

2. Through the rest of this chapter, _it is as-
Sumed that the FID bit is clear in all discus-
sions involving overflow, underflow, occur-
rence of —0, and integer conversion errors.

Not Used
Not used

Interrupt on Undefined
Variabie (F 1uv)

An interrupt occurs if FIuV is
set and a -0 s obtained from
memory as an operand of ADD,
SUB, MuLt, Div, CwmP, MOD,
NEG, ABS, TST or any LOAD in.
struction. The interrupt occurs
before execution on the FP11

except on NEG and ABS for which

3.1-6

11/68

8IT

10

9

8

NAME

Interrupt on Underflow (FIU)

Interrupt on Overflow (FIV)

interrupt on Integer
Conversion Error (FIC)

DESCRIPTION

it occurs after execution. When
FIUV is reset, —0 can be loaded
and used in any FPP operation.
Note that the interrupt is not ac-
tivated by the presence of —0 in
an AC operand of an arithmetic
instruction: in particular, trap on
—0 never occurs in Mode 0.

The FP11 will not store a resuit
of —0 without the simultaneous
occurrence of an interrupt

When the FIU bit is set, Floating
Underflow will cause an interrupt.
The fractional part of the resuit
of the operation causing the in-
terrupt will be correct. The biased
exponent will be too large by 400
(octai), except for the special
case of O, which is correct. An
exception is discussed in the de-
tailed description of -the LDEXF
instruction.

If the FIU bit is reset and if un-
derflow occurs, no interrupt oc-
curs and the resuit is set to
exact 0.

When the FIV bit is set, Floating
Overflow will cause an interrupt.
The fractionai part of the result
of the operation causing the
overflow will be correct. The bi-
ased exponent will be toc smali
by 400 (octal).

If the FIV bit is reset, and over-
flow occurs, there is no inter-
rupt. The FP11 returns exact O.

Special cases of overflow are
discussed in the detailed des-
criptions of the MOD and LDEXP
instructions.

When the FIC bit is set, and a
conversion to integer instruction
fails,” an interrupt will occur. If

3.1-7

11/68

BIT NAME
7 Floating Double Precision
Mode (FD)

6 Floating Long Integer
Mode (FL)

5 Floating Chop Mode (FT)

4 Floating Maintenance Mode
(FMM)

3 Floating Negative (FN)
2 Floating Zero (F2)

1 Floating Overflow (FV)

0 Floating Carry (FC)

DESCRIPTION

the interrupt occurs, the destina-
tion is set to O, and all other
registers are left untouched.

If the FIC bit is reset, the resuit
of the cperation will be the same
as detailed above, but no inter-
rupt will occurr.

The conversion instruction fails
if it generates an integer with
more bits than can fit in the
short or long integer word speci-
fied by the FL bit (see 6 below).

Determines the precision that is
used for floating point caicula-
tions. When set, double precision
is assumed; when reset, single
precision is used.

Active in conversion between in-
teger and floating point format.
When set, the integer format as-
sumed is double precision two’s
complement (i.e. 32 bits). When
reset, the integer format is as-
sumed to be single precision
two’s complement (i.e. 16 bits).

When bit FT is set, the resuit
of any arithmetic operation is
chopped (or truncated).

When reset, the result is rounded.

See Section 10.8 for a discussion
of the chopping and rounding
operations.

This code is a maintenance fea-
ture. Refer to the Maintenance
Manual for the details of its oper-
ation. The FMM bit can be set
only in Kernel Mode.

FN is set if the result of the iast
operation was negative, otherwise
it is reset.

FZ is set if the result of the last
operation was zero; otherwise it
is reset.

FV is set if the last operation re-
sulted in an exponent overflow;
otherwise it is reset.

FC is set if the last' operation
resulted in a carry of the most
significant bit. This can only oc-
cur in floating or double to inte-
ger conversions.

3.1-8

11/68

FLOATING EXCEPTION CODE AND ADDRESS REGISTER
- One interrupt vector is assigned to take care of all floating point excep-
tions (location 244). The seven possible errors are coded in the four bit
FEC (Floating Exception Code) register as foliows:
2 Floating OP code error
4 Floating divide by zero

6 Floating (or double) to integer conversion error
8 Floating overfiow

10 Floating underflow

12 © Floating undefined variable

14 Maintenance trap

The address of the instruction producing the exception is stored in the
FEA (Floating Exception Address) register.

The FEC and FEA registers are updated onty when one of the following
occurs:

1. divide by zero
2. illegal OP code’
3. any of the other five exceptions with the corresponding interrupt
is enabled.
NOTE

1. if one of the last five exceptions occurs with
the corresponding interrupt disabled, the FEC
and FEA are not updated.

2. Inhibition of interrupts by the FID bit does not
inhibit updating of the FEC and FEA, if an
exception occurs.

3. The FEC and FEA do not get updated if no
exception occurs. This means that the STST
(store status) instruction will return current
information only if the most recent floating
point instruction produced an exception.

4. Unlike the FPS register, no instructions are
provided for storage into the FEC and FEA
registers.

FLOATING POINT PROCESSOR INSTRUCTION ADDRESSING

Floating Point Processor instructions use the same type of addressing as
the Central Processor instructions. A source or destination operand is
specified by designating one of eight addressing modes and one of
eight central processor general registers to be used in the specified
mode. The modes of addressing are the same as those of the central
processor except for mode 0. in mode O the operand is located in the
designated Floating Point Processor Accumulator, rather than in a Cen-
tral processor general register. The modes of addressing:

O = Direct Accumulator

1 = Deferred

2 = Auto-increment

3 = Auto-increment deferred
4 = Auto-decrement

5 = Auto-decrement deferred
6 = Indexed

7 = Indexed deferred

Autoincrement and autodecrement operate on increments and decre-
ments of 4 for F Format and 10, for D Format.

In mode O, the user can make use of all six FPP accumulators (ACO—
ACS5) as his source or destination. In ail other modes, which involve
transfer of data from memory or the general register, the user is re-
stricted to the first four FPP accumulators (ACO—AC3).

In immediate addressing (Mode 2, R7) only 16 bits are loaded or stored.

3.1-9

-11/68

ACCURACY . }
General comments on the accuracy of the FPP are presented here. The
descriptions of the individual instructions include the accuracy at which
they operate. An instruction or operation is regarded as ‘‘exact’ if the
resuit is identical to an infinite precision caiculation involving the same
operands. The a priori accuracy of the operands is thus ignored. Al
arithmetic instructions treat an operand whose biased exponent is O as
an exact O (unless FIUV is enabled and the operand is —0, in which case
an interrupt occurs). For all arithmetic operations, except DIV, a zero
operand implies that the instruction is exact. The same statement holds
for DIV if the zero operand is the dividend. But if it is the divisor, division
is undefined and an interrupt occurs.

For non-vanishing floating point operands, the fractional part is binary
normalized. It contains 24 bits or 56 bits for Floating Mode and Double
Mode, respectively. The internal hardware registers contain 60 bits for
processing the fractional parts of the operands, of which the high order
bit is reserved for arithmetic overflow. Therefore there are, internally, 35
guard bits for Floating Mode and 3 guard bits for Double Mode arithmetic
operations. For ADD, SUB, MUL, and DIV, two guard bits are necessary
and sufficient to guarantee return of a chopped or rounded result iden-
tical to the corresponding infinite precision operation chopped or rounded
to the specified word iength. Thus, with two gucrd bits, a chopped result
has an error bound of one least significant bit (LSB): a rounded resuit
has an error bound of 1/2 LSB. (For a radix other than 2, replace “bit"

- with “digit” in the two preceding sentences to get the corresponding
statements on accuracy.) These error bounds are realized by the FP11
for most instructions. For the addition of operands of opposite sign or
for the subtraction of operands of the same sign in rounded double pre-
cision, the error bound is 3/4 LSB, which is slightly larger than the 1/2
LSB error bound for ail other rounded operations.

In the rest of this chapter an arithmetic result is called exact if no non-
vanishing bits would be lost by chopping. The first bit lost in chopping
is referred to as the ‘“‘rounding’bit. The value of a rounded result is
related to the chopped result as foliows: :

1. if the rounding bit is one, the rounded result is the chopped resuit
incremented by an LSB (least significant bit).

2. if the rounding bit is zero, the rounded and chopped resuits are
identical.

it follows that
1. If the result is exact :
rounded value = chopped value = exact value
2. If the result is not exact, its magnitude
(a) is always decreased by chopping
(b) is decreased by rounding if the rounding bit is zero
(c) is increased by rounding if the rounding bit is one.

Occurrence of floating point overflow and underfiow is an error condition:
the result of the caiculation cannot be correctly stored because the expo-
nent is too big to fit into the 8 bits reserved for it. However, the internal
hardware has produced the correct answer. For the case of underflow
replacement of the correct answer by zero is a reasonable resolution of
the problem for many applications. This is done on the FP11 if the
underfiow interrupt is'disabled. The error incurred by this action is an
absolute rather than a relative error; it is bounded (in absolute value) by
2°%(—128). There is no such simple resolution for the case of overflow.
Ihwe(a:::gn; taken, if the overflow interrupt is disabled, is described under
i

Tl)e FIV and FIU bits (of the fioating point status word) provide the user
with an opportunity to impiement his own fix up of an overflow or
pnderﬁow condition. If such a condition occurs and the corresponding
nqterruqt is enabled, the hardware stores the fractional part and the low
eight bits of the biased exponent. The interrupt will take place and the
user can identify the cause by examination of the FV (floating overfiow)
bit or the FEC (floating exception) register. The reader can readily verify
that (for the standard arithmetic operations ADD, SUB, MUL, and DIV)
the _bsased exponent returned by the hardware bears the following
relation to the correct exponent generated by the hardware:

1. on overflow: it is too smali by 400 octal .
2. on underflow: if the biased exponent is 0 it is correct. If it is not 0,
it is too large by 400 octal.

Thus, with the interrupt enabled, enough information is available to
det_ermine the correct answer. The user may, for example, rescale his
variables (via STEXP and LDEXP) to continue his calculation. Note that
the accuracy of the fractional part is unaffected by the occurrence of
underfiow or overflow. 11/68

3.2-10

FLOATING POINT INSTRUCTIONS

Each instruction that references a fioating point number can operate on
either floating or doubile precision numbers depending on the state of
the FD mode bit. Similarly, there is a mode bit FL that determines
whether a 32-bit integer (FL = 1) or a 16-bit integer (FL = O)is used in
conversion between integer and floating point representation. FSRC and
FDST use floating point addressing modes; SRC and DST use CPU
addressing Modes.

Floating Point Instruction Format
Double Operand Adressing

d. A

12 11 8 7 6 5 [o]

L , oc I FOC I AC ‘anc,sosr.s?c,osr 1
, e 1 . — .
3

Single Operand Addressing

[l oc ; r<'>c [Fsac,rosr,?ac.osr j
2 1 1 s 2 A i i 1 1
5 2 11 6 5 [¢)

OC = Op Code — 17

FOC = Floating Op Code

AC = Accumulator

FSRC, FDST use FPP Address Modes
SRC, DST use CPU Address Modes

General Definitions: .
XL = largest fraction that can be represented:
1-2%*(—24), FD = ©; single precision
1-2%%(_56), FD = 1); double precision
XLL = smaliest number that is not identically zero — 2**(—128) —2%=
(—127))*(1/2)
XUL = largest number that can be represented — 2%*(127)*XL
JL = largest integer that can be represented:
2°*(15)~1 if FL=0 2*%(31)~1if FL=1
ABS (address) = absolute value of (address)
EXP (address) — biased exponent of (address)
LT. = “less than”
-LE. = “less than or equal”
-GT. = “greater than"
-GE. = “greater than or equal’’
LSB = least significant bit

3.1-11

11/68

STF

STD
Store Floating/Double 174ACFDST
Loyt torjr ool oo, |
1% 2 1 8 T 6 5 0
Operation: FDST « (AC)
Condition Codes: FC «FC
FV « FV
FZ «FZ
FN «FN

Description:

Interrupts:

Accuracy:
Special Comment:

Store Single or Double Precision Number from
Accumulator.

These instructions do not interrupt if FIUV. en-
abled, because the —O, if present, is in AC,. not
in memory. Neither overflow nor underflow can
occur.

These instructions are exact.

These instructions permit storage of a —0 in
memory from AC. There are two conditions in
which minus O can be stored in AC of the FP11-C
or FP11 One occurs when underflow or over-
flow is present and the corresponding interrupt
is enabled. A second occurs when an LDl or LDF
instruction is-executed and the FIUV bit is dis-
abled.

3.1-12

11/68

ABSF

ABSD
" Make Absolute Flocating/Doubie 1706FDST
. !
o vtfo o0y v o o, |
15 12 1 6 5 0
Operation: If (FDST) < 0, FDST « — (FDST).
If EXP(FDST) = O, FDST « exact O.
~ For all other cases, FDST « (FDST).
Condition Codes: ~ FC « 0.
FV « 0. .
FZ « 1 if EXP(FDST) = O, else FZ «O.
FN <0
Description: . Set the contents of FDST tc its absolute value.
Interrupts: if FIUV is set. Trap on —0 occurs after execution.
Accuracy: These instructions are exact.
Special Comment: If a minus O is present in memory and the FIUV

bit is enabled, then the FP11 - and integral float-
ing point unit store exact O in memory (zero ex-
ponent, zero fraction, and positive sign). The
condition code reflects an exact O (FZ « 1).

3.1-13

11/68

NEGF

NEGD
Negate Floating/Double 1707FDST
o 1 1 1/lo0o o o0 1t 1 1 FDST
[[o R B
15 12 1 € 5 0
Operation: FDOST « — (FDST) if EXP(FDST) 3= 0, else FDST «

Condition Codes:

Description:

interrupts:

Accuracy:
Special Comment:

exact 0.

FC «0.

FVY « 0.

FZ « 1 if EXP(FDST) = O, else FZ « 0.

FN « 1 If (FDST) < O, eise FN « 0.

Negate single or double Precision number, store
resuit in same location. (FDST)

If FIUV is enabled

Trap on —0 occurs after execution.

Neither overflow nor underflow can occur.
These instructions are exact.

if a minus O is present in memory and the FIUV
bit is enabled, then the FP11 and the integral
floating point unit store exact O in memory (zero
exponent, zero fraction, and positive sign). The
condition code reflects an exact 0 (FZ « 1).

3.1-14

11/68

DIVF

DIVD
Divide Floating/Double 174(AC + 4)FSRC
FSRC
Lyt fre o[w1
15 12 14 8 k4] S °]

Operation:

Condition Codes:

Description:

Interrupts:

Special Comment:

If EXP(FSRC) =0, AC < (AC): instruction is
aborted.

if EXP(AC) = 0, AC « exact O.

For all other cases, let QUOT = (AC)/(FSRC):
If underflow occurs and FIU is not enabled
AC « exact 0.

if overflow occurs and FIV is not enabied, AC «
exact 0.

For all remaining cases AC « QUOT.

FC «0.

FV « 1 if overflow occurs, else FV « 0.

FZ « 1 if EXP(AC) = 0, else FZ «O.

FN « 1 if (AC) < 0, eise FN « 0.

If either operand has a biased exponent of 0, it
is treated as an exact 0. For FSRC this would
imply division by zero; in this case the instrue-
tion is aborted, the FEC register is set to 4 and
an interrupt occurs. Otherwise the quotient is
developed to single or double precision with
enough guard bits for correct rounding. The
quotient is rounded or chopped in accordance
with the values of the FD and FT bits in the F PS
register. The result is stored in AC except for:
Overflow with interrupt disabled.

Underflow with interrupt disabled.

For these exceptional cases an exact Q is stored
in accumulator.

It FIUV is enabled, trap on —0 in FSRC occurs
before execution.

If EXP(FSRC) =0 interrupt traps on attempt to
divide by 0.

If overflow or underfiow occurs and if the cor-
responding interrupt is enabled, the trap occurs
with the faulty results in AC. The fractional parts
are correctly stored. The exponent part is too
small by 400 octal for overflow. It is too large by
400 octal for underfiow, except for the special
case of 0, which is correct.

Errors due to overflow, underflow and division
by O are described above. f none of these
occurs, the error in the quotient will be bounded
by 1 LSB in chopping mode and by 1/2 LSB in
rounding mode.

The undefined variable —0 can occur only in con-
junction with overflow or underfiow. It will be
stored in AC only if the corresponding interrupt is
enabled.

3.1-15

11/68

STCFI

STCFL
STCDI
STCDL

Store and Convert from Floating or ' 175(AC + 4)DST
Double to integer or Long Integer

t vt o1 o0 18 1 Ac I osT l
L L j : 1 i N 1 - 1 1 i
15 12 1 8 7 6 S)

Operation: DST «C, (AC)if —JL—1 < C. (AC) < JL L+ 1,
: else DST « Q, where C. specifies con-
version from floating mede x to integer
mode j;
j=lifFL=0, j=LifFL=1,
Xx=FifFD=0C, x=DifFD=1.
JL is the largest integer:
2**15 — 1 for FL=0
2*#31 —1 for FL= 1

Condition Codes: Ce«FC«0if —JL—-1<C, (AC) < JL + 1,

else FC « 1.

Ve&eFV «0.

Z «FZ «1if (DST) =0, else FZ «0.
N «FN « 1 if (DST) <0, else FN « 0.

Description: Conversion is performed from a floating point
representation of the data in the accumuiator to
an integer representation.
if the conversion is to a 32-bit word (L mode)
and an address mode of O, or immediate adress-
ing mode, is specified, only the most significant
16 bits are stored in the destination register. _ ;
If the operation is out of the integer range se- !
lected by FL, FC is set to 1 and the contents ,
of the DST are set to 0.
Numbers to be converted are always chopped
(rather than rounded) before conversion. This
is true even when the Chop Mode bit, FT is

" cleared in the Floating Point Status Register.
interrupts: These instructions do not interrupt if FIUV is
enabled, because the -0, if present, is in AC,
not in memory.
If FIC enabled, trap on conversion failure will
occur.

Accuracy: These instructions store the integer part of the i
floating point operand, which may not be the
integer most closely approximating the operand. :
They are exact if the integer part is within the
range implied by FL. ,

3.1-16) 11/68

TSTF

TSTD
Test Floating/Double 1705FDST
{cll 1 1]0 OLOI, c!z) FDIST J
15 12 1 6 5 [
Operation: FDST « (FDST)
Condition Codes: FC « 0.
' . FV « 0.
FZ « 1 if EXP(FDST) = 0, else FZ « 0.
FN « 1 if (FDST) < 0, else FN « 0.
Description: Set the Floating Point Processor's Condition
Codes according to the contents of FDST.
Interrupts: if FIUV is set, trap on —0 occurs after execution
Overflow and underflow cannot occur.
Accuracy: These instructions are exact. -

3.1-17 11/68

ADDF
ADDD

Add Floating/Double " 172ACFSRC

12

8 7 6 5 o]

Lot o vopol e [T e]
15 »

Operation:

Condition Codes:

Description:

interrupts:

Accuracy:

Special Comment:

Let SUM = (AC) + (FSRC):

If underflow occurs and FiU is not enabled,
AC « exact 0.

If overflow occurs and FIV is not enabled,
AC <« exact O.

For all other cases, AC « SUM.

FC «O.

FV « 1 If overflow occurs, eise FV « 0.
FZ «1 i (AC) =0, else FZ « 0.

FN «< 1 If (AC) < O, else FN « 0.

Add the contents of FSRC to the contents of AC.
The addition is carried out in single or double
precision and is rounded or chopped in accor-
dance with the values of the FD and FT bits in
the FPS register. The result is stored in AC
except for overflow with interrupt disabled and
underflow with interrupt disabled.

For these exceptional cases an exact 0 is
stored in AC.

If FIUV is enabled, trap on —0 in FSRC occurs .

before execution.

If overflow or underflow occurs and if the cor-
responding interrupt is enabled, the trap occurs
with the faulty result in AC. The fractional parts
are correctly stored. The exponent part is too
large by 400 octal for underfiow, except for the
special case of O, which is correct.

Errors due to overflow and underflow are de-
scribed above. If neither occurs, then: For
oppositely signed operands with exponent dif-
ferences of O or 1, the answer returned is exact
if a loss of significance of one or more bits
occurs. Note that these are the only cases for
which loss of significance of more than one bit
can occur. For ail other cases the resuit is
inexact with error bounds of

1 LSB in chopping mode with either single or
double precision.

3/4 1 .SB in rounding mode with double precision.
For an ADD instruction specifying double pre-
cision with rounding, the accuracy of the integral
floating point unit is 1/2 LSB.

The undefined variable —0 can occur only in con-
junction with overflow or underflow. it will be
stored in AC only if the corresponding inter-
rupt is enabled.

3.1-18

11/68

Set Integer Mode 170002
[‘1‘11s'lononolononol.onoxoioi'Lo_]
5 0
Operation: FL «0
Description: Set the FPP for Integer Data.
SETL
Set Long Integer Mode 170012

[1 11 {o 0O 9.0 0O 6.0 0 1,0 1 o}
1 " L i L 1 1 1 1 N L i : :
15 12 1"

Operation: FL«1
Description: Set the FPP for Long Integer Data.

3.1-19 11/88

STST

Store FPPs Status 1703DST
oST
[‘ l ' 1 1 i ' o 'l o L o l o 1 ' 1 ‘] 1 1 ' A 'l]
15 [FIT] 6§ 5 0
Operation: DST « (FEC)
DST 4 2 «(FEA)
Description: Store the FEC and then the FPP's Exception

Address Pointer in DST and DST + 2.

NOTES: 1. If destination mode specifies a
general register or immediate ad-
dressing, only the FEC is saved.

2. The information in these registers
is current only if the most recently
executed floating point instruction
(refer to Section 10.6) caused a
floating point exception.

CFCC
Copy Floating Condition Codes 170000
11 1. 1’ 11010‘0101010101ololololo'
15 2 1 6 5 [
Operation: C «FC
V «FV
Z «FZ
N «FN
Description: Copy FPP Condition Codes into the CPU’s Con-
dition Codes.

3.1-20 11/68

CLRF

-.CLRD
Clear Floating/Double 1704FDST
FDST
[11‘1'1‘0¢010J11010 n PRSI N 11
15 12 1 6 5 0
Operation: FDST & exact O.
Condition Codes: FC « 0.
FV « 0.
FZ «1
FN « 0.
Description: Set FDST to 0. Set FZ condition code and clear
other condition code bits.
Interrupts: No interrupts will occur. Neither overflow nor
underflow can occur.
Accuracy: These instructions are exact.

3.1-21 11/68

LDEXP

Load Exponent

176(AC + 4)SRC

15

Operation:

Condition Codes:

Description:

Interrupts:

Accuracy:

8 7 6 5 o]

r1 I Ir 1 0 1 I aC I SRC]
1 1 i N L 1 R : 1 i | i i
Y]

NOTE: 177 and 200, appearing below, are octal
numbers.

if —200 < SRC < 200, EXP(AC) «(SRC) -+ 200

and the rest of AC is unchanged on FP11C and

FP11B. ’

i (SRC) > 177 and FIV is enabled,
EXP(AC) « (SRC) < 6:0 >
EXP(AC) « (SRC)< 7:0 > on FP118B.
If (SRC) > 177 and FIV is disabled,
AC «exact 0
EXP(AC) « (SRC 4 200) < 7:0 > on
FP118.
1f (SRC) < —177 and FIU is disabled,
AC <« exact 0.

If (SRC) < —177 and FIU is enabled,
EXP(AC) « (SRC) < 6:0 >
EXP(AC) « (SRC)+4 200) < 7:0 >

FC « 0.

FV « 1 if (SRC) > 177, else FV « 0.

FZ « 1 if EXP(AC) = 0, =ise FZ « 0.

FN « 1 if (AC) < 0, else FN « 0.

Change AC so that its unbiased exponent —
(SRC). That is, convert (SRC) from 2's comple-
ment to excess 200 notation, and insert in the
EXP field of AC. This is a meaningful operation
only if ABS(SRC).LE.177. i

If SRC > 177, result is treated as overflow. If
SRC < —177, result is treated as underflow.
Note that the FP11C and FP11B do not treat
these abnormal conditions in exactly the same
way.

No trap on —0 in AC occurs, even if FIUV en-
abled.

If SRC > 177 and FIV enabled, trap on over-
flow will occur.

If SRC < —177 and FIU enabled, trap on under-
flow will occur.

Errors due to overflow and underflow are de-
scribed above. If EXP(AC) = 0 and SRC s —200,
(AC) changes from a floating point number
treated as O by all floating arithmetic operations
to a non-zero number. This is because the inser-
tion of the “hidden’ bit in the hardware imple-
mentation of arithmetic instructions is triggered
by a non-vanishing value of EXP.

For all other cases, LDEXP implements exactly
the transformation of a floating point number
(2#*K)*f into (2**(SRC))*f where 1/2 LE.ABS
().LT.1.

.1=-22

11/68

LDF

LDD
Load Floating/Double 172(AC - 4)FSRC
[y v fovoy e | o, . |
15 2 1. 8 7 6 5 0
Operation: AC « (FSRC)
Condition Codes: FC «0
. FV «0

Description:

Interrupts:

Accuracy:
Special Comment:

FZ « 1 if (AC) =0, eise FZ « 0.

FN « 1 if (AC) < O, eise FN « 0.

toad Single or Double Precision Number into
Accumuiator.

if FIUV is enabled, trap on —0 occurs before AC
is loaded. However, the condition codes will re-
flect a fetch of minus 0 regardiess of the FIUV
bit. Neither overflow nor underflow can occur.

These instructions are exact.

These instructions permit use of —0 in a subse-
quent floating point instruction if FIUV is not
enabled and (FSRC) = —0.

3.1-23

11/68

STCFD

STCDF
Store and convert from Floating to 176ACFDST
Double or from Double to Fioating
t 1 1 c FOST
Lt vegefef o]
15 8 = 6 § 0

Jperation:

Condition Codes:

Description:

Interrupts:

Accuracy:

If EXP(AC) = 0, FDST «exact 0

If FD =1, FT = O, FIV = O and rounding causes
overflow, FDST « exact 0.
In all other cases, FDST « C. (AC), where
C. specifies conversion from floating mode x
to floating mode y;
x=Fandy=Dif FD=0,
x=Dandy=FifFD=1.
FC « 0.
FV «1 If conversion produces overflow eise
FV «0.
FZ «1 1f (AC) = 0, eise FZ « Q.
FN « 1 If (AC) < 0, else FN « 0.

If the current mode is single precision, the Ac-
cumulator is stored left justified in FDST and
the lower haif is cleared. If the current mode
is double precisicn, the contents of the accumu-
lator are converted to single precision, chopped
or rounded depending on the state of FT, and
stored in FDST.

Trap on —O will not occur even if FIUV is en-
abled because FSRC is an accumulator.

Underfiow cannot occur.

Overflow cannot occur for STCFD.

A trap occurs if FIV is enabled, and if rounding
with STCDF causes overflow; FDST < overflowed

result of conversion. This result must be +0
or —0.

STCFD is an exact instruction. Except for over-
flow, described above, STCDF incurs an error
bounded by 1 LSB in chopping mode and 1/2
LSB in rounding mode.

3.1-24

11/68

CMPF

CMPD
Compare Floating/Double 173 (AC + 4) FSRC
)] | FSRC
l J ' ' ! Bt ! ° L' 4 ! l ! { Axc I i Y l i 1 —]
15 12 8 7 6 5 . [5)
Operation: (FSRC) — (AC)

Condition Codes:

Description:

Interrupts:

Accuracy:
Special Comment:

FC « 0.

FV « 0.

FZ « 1 If (FSRC) — (AC) = 0, else FZ « 0.

FN « 1 if (FSRC) — (AC) < 0, eilse FN « 0.
Compare the contents of FSRC with the accu-
mutlator. Set the appropriate floating point con-
dition codes. FSRC and the accumulator are left
unchanged.

If FIUV is enabled, trap on —0 occurs before
execution.

These instructions are exact.

An operand which has a biased exponent of zero
is treated as if it were exact zero. in the case

where both operands are zero, the floating point
processor will store exact O in the AC.

3.1-25

11/68

SETF

Set Floating Mode 170001
[‘l‘l’l’]ololololojolojolololol’_l
15 i [5)
Operation: FD «0
Description: Set the FPP in Single Precision Mode.
SETD
Set Fioating Double Mode 170011
Ly vJe,0 000 000 v o o 7]
15 5)
Operation: FD « 1
Description: : Set the FPP in Double Precision Mode.
LDFPS
Load FPPs Program Status 1701SRC
SRC
I’l‘l'L'.Lololololol’lgl i L " Lj
15 2 n 6 5)
Operation: FPS « (SRC)
Description: Load FPP’s Status from SRC.
Special Comment: The user is cautioned not to use bits 13 and 12 >

for his own purposes, since these bits are not
recoverable by the STFPS instruction.

STFPS
Store FPPs Program Status 1702DST
- DST
Lyt oo ope v o] o =]
15 12 1 s 0
Operation: DST « (FPS)
Description: Store FPP's Status in DST.

Special Comment: Bits 13 and 12 are loaded with 0. All other bits
are the corresponding bits in the FPS.

11/68
3.1-26

STEXP

Store Exponent

175ACDST

i

15

Operation:
Condition Codes:

Description:

Interrupts:

Accuracy:

12

11

‘ |

i osT

EFENENEN EFCIEIED 2 S .
8

7 6 S Q

- DST « EXP(AC)—200 octal

C «FC «0.
V « FV « 0.
Z «~FZ «1if (DST) =0, else FZ < 0.
N < FN <~ 1if (DST) <0, else FN < 0.

Convert accumulator's exponent from excess
200 octal notation to 2's complement, and store
resuit in DST.

This instruction will not trap on —0.
Overflow and underfiow cannot occur.
This instruction is always exact.

3.1-27

11/68

LDCIF
LDCID
LDCLF
LDCLD

Load and Convert Integer or Long Integer to 177ACSRC

Floating or Double

Precision

Operation:

Condition Codes:

Description:

Interrupts:

Accuracy:

AC « C. (SRC), where

C.. specifies conversion from integer mode -

i to floating mode x;
j=1ifFL=0,j=LifFL=1,
x=FifFD=0,x=Dif FD=1.

FC « 0.

FV « 0.

FZ « 1 if (AC) =0, eise FZ « 0.

FN « 1 1f (AC) < O, else FN « 0.

Conversion is performed on the contents of SRC
from a 2's complement integer with precision |
to a floating point number of precision x. Note
that j and x are determined by the state of the
mode bits FLand FD: J = lor L, and X = F or D.

If a 32-bit Integer is specified (L mode) and
(SRC) has an addressing mode of O, or immedi-
ate addressing mode is specified, the 16 bits of
the source register are left justified and the
remaining 16 bits loaded with zeroes before
conversion.

In the case of LDCLF the fractional part of the
floating point representation is chopped or
rounded to 24 bits for FT=1 and O respec-
tively. ~

None; SRC is not floating point, so trap on —0
cannot occur.

QOverfiow and underflow cannot occur.

LCCIF, LDCID, LDCLD are exact instructions.
The error incurred by LDCLF is bounded by one
LSB in chopping mode, and by I/2 LSB in
rounding mode.

3.1-28

11/68

LDCDF
LDCFD

Load and convert from Double to Float- 177(AC + 4)FSRC
ing or from Floating to Double

La 11
1 el
15 12

Operation:

Condition Codes:

Description:

Interrupts:

Accuracy:

[=] &

8 7 & 5 (o}

If EXP(FSRC) = 0, AC « exact 0.

If FD = 1, FT = 0, FIV = O and rounding
causes overflow, AC < exact O.

In all other cases AC «C., (FSRC), where C,,
specifies conversion from floating mode x to
floating mode y; .

x =D, y=F if FD = 0 (single)
x=F, y = D if FD = 1. (double)

FC « 0.

FV « 1 if conversion produces overflow, eise
FV «0.

FZ «1if (AC) =0, eise FZ « 0.

FN « 1 if (AC) < 0, else FN « 0.

If the current mode is Floating Mode (FD = 0)
the source is assumed to be a double-precision
nuwnber and is converted to single precision. if
the Floating Chop bit (FT) is set, the number
is chopped, otherwise the number is rounded.

If the current mode is Double Mode (FD = 1),
the source is assumed to be a single-precision
number, and is loaded left justified in the AC.
The lower haif of the AC is cleared.

If FIUV is enabled, trap on —0 occurs before
execution. However, the condition codes wiil re-
flect a fetch minus O regardiess of the FIUV bit.

Overflow cannot occur for LDCFD.

A trap occurs if FIV is enabled, and if rounding
with LDCDF causes overflow; AC <« overflowed
result of conversion. This resuit must be +0 or
-0.

Underflow cannot occur.

LDCFD is an exact instruction. Except for over-
flow, described above, LDCDF incurs an error
bounded by one LSB in chopping mode, and by
1/2 LSB in rounding mode.

3.1-29

11/68

MODF
MODD

Muitiply and Integerize Floating/Doubie 171(AC + 4)FSRC

[’1’,"

1 J o 0o t 1 [AC l FSRC I
1 N 1 i : I 1 L L
12 1" 8 7 6 5

15

Description
and Operation

0

This instruction generates the product of its
two floating point operands, separates the prod-
uct into integer and fractional parts and then
stores one or both parts as floating point num-
bers. .
Let PROD = (AC)*(FSRC) so that in:
Floating point: ABS(PROD) = (2**K) *f
where 1/2.LE.fLT.1 and
EXP(PROD) = (200 + K) octal
Fixed Point binary: PROD = N + g, with

N = INT(PROD) = the integer
part of PROD

and

g = PROD — INT(PROD) = the fractional
part of PROD with O.LE.g.LT.1
Both N and g have the same sign as PROD.
They are returned as follows:
If AC is an even-numbered accumulator (O or
2), N is stored in AC+ 1 (1 or 3), and g is
stored in AC.
If AC is an odd-numbered accumulator, N is
not stored, and g is stored in AC.
The two statements above can be combined as
follows: N is returned to ACvl and g is returned
to AC, where v means .OR.
Five special cases occur, as indicated in the
following formal description” with L =24 for
Floating Mode and L = 56 for Double Mode:
1. If PROD overflows and FIV enabied:
ACvl « N, chopped to L bits, AC « exact O

Note that EXP(N) is too small by 400 (octal),
and that <O can get stored in ACvl.

if FIV is not enabled: ACvl < exact 0, AC «
exact 0, and —O wili never be stored.

2. If 2**L LE.ABS(PROD) and no overflow
ACvl « N, chopped to L bits, AC < exact O

The sign and EXP of N are correct, but low
order bit information, such as parity, is lost.
3. If 1.LE.ABS(PROD).LT.2%%L
ACvl «N, AC «<g

The integer part N is exact. The fractional part
g is normalized, and chopped or rounded in
accordance with FT. Rounding may cause a re-
turn of —unity for the fractional part. For L
= 24, the error in g is bounded by 1 LSB in
chopping mode and by 1/2 LSB in rounding
mode. For L = 56, the error in g increases from
the above limits as ABS(N) increases above 3
because only 59 bits of PROD are generated:

if 2**p.LE.ABS(N).LT.2%*(p + 1), with p > 2,
the low order p — 2 bits of g may be in error.

3.1-30

11/68

Condition Codes:

lﬁterrupts:

Accuracy:
Applications:

4. If ABS (PROD). LT.1 and no underflow:
ACvl <exact 0 AC «g -

There is no error in the integer part. The error in
the fractiona! part-is bounded by 1 LSB in chop-
ping mode and 1/2 LSB in rounding mode.
Rounding may cause a return of =unity for the
fractional part.

5. If PROD underfiows and FiU enabled:
ACvl «exact 0 AC «g

Errors are as in case 4, except that EXP(AC) will
be too large by 400 octal (except if EXP =0, it
is correct). Interrupt will occur and —0 can be
stored in AC.

IF FIU is not enabled, ACvl « exact O and AC
« exact 0. For this case the error in the frac-
tional part is less than 2+%(—128).

FC « 0.)

FV « 1 if PROD overfiows, else FV « 0.

FZ « 1if (AC) = 0, eise FZ « 0.

FN « if (AC) < 0, eise FN « 0.

If FIUV is enabled, trap on —0 in FSRC will oc-
cur before execution.

Overflow and Underflow are discussed above.
Discussed above.

1. Binary to decimal conversion of a proper
fraction: the foilowing algorithm, using MOD, will
generate gecimal digits D(1), D(2) ... from left
to right:

Initialize: | «0 .
X « number to be converted;
ABS(X) < 1

While X .= 0 do

Begin PROD « X#10;
l=1+1;
D(l) « INT(PROD);
X < PROD — INT(PROD);
END;

This algorithm is exact; it is case 3 in the de-
scription: the number of non-vanishing bits in
the fractional part of PROD never exceeds L,
and hence neither chopping nor rounding can
introduce error.

2. To reduce the argument of a trigc;n-ometric
function.

ARG*2/Pl = N + g. The low two bits of N
identify the quadrant, and g is the argument
reduced to the first quadrant. The accuracy of
N +g is limited to L bits because of the factor
2/Pl. The accuracy of the reduced argument
thus depends on the size of N.

3. To evaluate the exponential function e**®x,

obtain

x%(log e base 2) =N +g.

Then e**x = (2**N)*(e**(g*1n 2))
The reduced argument is g*1n2 <1 and the
factor 2**N is an exact power of 2, which may
be scaled in at the end via STEXP, ADD N to
EXP and LDEXP. The accuracy of N + g is lim-
ited to L bits because of the factor (log e base
2). The accuracy of the reduced argument thus
depends on the size of N.

3.1-31

11/68

MULF
MULD

Multiply Floating/Double 171ACFSRC

+ 1 1 t]o o0 1. o0 [AC I FS J
r l " i l A i l 1 A 1 fc A A
15 2 11)

Operation:

Condition Codes:

Description:

Interrupts:

Accuracy:

Special Comment:

7 6 S 0

Let PROD = (AC)*(FSRC)

if underflow occurs and FiU is not enabled,
AC <« exact O.

If overflow occurs and FIV is not enabled,
AC «exact O.
For all other cases AC «PROD

FC « 0.

FV « 1 if overflow occurs, else FV « 0.
FZ « 1 if (AC) =0, eise FZ « 0.

FN « 1 if (AC) <O, else FN «O.

If the biased exponent of either operand is zero,
(AC) «exact 0. For ali other cases PROD is
generated to 48 bits for Floating Mode and 59
bits for Double Mode. The product is rounded or
chopped for FT = 0 and 1, respectively, and is
stored in AC except for

Overflow with interrupt disabled.
Underflow with interrupt disabled.

For these exceptional cases, an exact O is stored
in accumulator,

if FIUV is enabied, trap on —0 occurs before
execution.

If overfiow or underflow occurs and if the cor-
responding interrupt is enabled, the trap occurs
with the faulty results in AC. The fractional parts
are correctly stored. The exponent part is too
smail by 400 octal for overflow. it is too large by
400 otcal for underfiow, except for the special
case of O, which is correct.

Errors due to overflow and underflow are de-
scribed above. If neither occurs, the error
incurred is bounded by 1 LSB in chopping mode
and 1/2 LSB in rounding mode.

The undefined variable —0 can occur only in
conjunction with overflow or underfiow. It will be
stored in AC only if corresponding interrupt is
enabled.

3.1-32

11/68

Section 5 | PDP 11/68 Console

The following section describes specific details of the
11/68 console and conforms in all respects to the Mid-
range Systems Console Functional Specification as described
in Appendix A. The 11/68 console functions and operations
are currently in the process of being defined such that the
section described so far is incomplete.

FORWARD

This document will be used to define the proposed functions of
the 11/68 ASCII console.There s going to be a corporate standard for
the ASCII console functions and the syntax used toc implement them,The
11/68 console will conform to these guidelines and specifications.,

The console interfaces to an operator via a console terminal
(e.g, LA3S),and Interfaces to the processor through a hardware inter=
face,The console terminal and the CPU hardware will be linked
by an 8@85 microprocessor which will interpret the commands and execute
them through the microprocessor software and CPU microcode,The console
will be the functional equivilent of the past CPIl’s lights and switches
console.The console terminal will also function as KB@: (TT@:),when not
in console mode.

The console cahel equivilent functions will include starting and
stopping the CPU,;reading ané writting maln memory,I/0 registers,internal
CPU registers ang CPU execution control,

TERMINOLOGY & NOTATION

LA A L R R B L Lk L X 2 2 X & X X L 2 2 L K 2 J

< > Angle brackets are used to denote category names.For exam=
ple,the category name <address> may be used to represent
anvy legal address.

[1 Brackets surrounding part of an expression indicate that
part of the expression is optional,

<sp> Indicates one space,
<count> . Represents a numeric count.
<address> Represents an address argument,)
EXP., <1234567¢> = numeric address
<PC> = program counter (internal R7)
<pPS> - processor status word
<SW> = switch register
<SP> - stack pointer (GR6)
<data> Represents a numeric argument,
<qualifier> A command modifier or switch.
<prompt> Indicates the console input prompt, “>>>°,
<cr> Carriage return,
<lf> ILine feed,
COMMANDS

BOOT COMMAND N
¥/

syntax: R[<sp><device=name>]<cr>

.emantics: <device=name> is of the following format "DDn”’
where °’DD’ is a two letter device mnemonic (such as DT
for DEC=Tape), and °n’ is a one diqit unit number,

If no <device=name> is given the console will preform the
poot sequence for the default svstem device,

Response: The console enters the program I/0 state (terminal func-
tions as KB@:), after starting the boot seauence,

CONTINUE COMMAND

syntax: Cc<er>

Semantics: The CPU keains instruction execution at the address
currentlv contained in the CPU program counter (PC).
CPU initialization {s NOT performed,The console enters

prgram I/0 mode after the continue is issued,

Response: <cr><lf>,console enters progam I/0 mode,

DEPOSIT COMMAND

syntax: DPlqualifier=-listl<sp><address><sp><data><cr>
Nualifiers: /WCS =deposit data to the writtable control store,
/B -pyte write,
/% -word write,
/G =internal register.
/P =physical address
/v -virtual address
Semantics: Deposits <data> to the <address> specified,The address type

will depend upon the gualifier used with the command.
Sequential deposits will write sequential locations,

Response: <cr><lf><prompt>

EXAMINE COMMAND

Syntax: E(<qualifier=-1ist>)[<sp><address>)<cr>

Qualifiers: /B ~byte read,
/W =word read,
/G =internal register read,
/P -physical address,
/v =virtual address.

, Semantics: Examines and displays the contents of the specified

<address>,If no <address> is specified than thg_<defau1t-

address> is examined,

Response: <er><lf><tab><address-space=identifler><sp><address><sp>
<data><cr><lf><prompt>

INITIALIZE COMMAND

Syntax: I<cr>
Semantics:? A CPU system init is performed.
Response: <cr><lf><prompt>

HALT COMMAND
Syntax: B<cr>

Semantics: The CPU will stop instruction execution after the current
instruction is completed,

Response: <contents of the CPU PC><cr><lf><prompt>

LOAD COMMAND
syntax:? Llqualifier~list]l<sp><file=spec><cr>

' Qemantics: The load command is used to load (read),file data from
the console’s load device to main memorysor to the wCS,
If no qualifier is used the data is transferred to memorv,

Qualifiers: /S:<address>=the start switch is used to specify a starte
ing address for the load ,If no address is
specified the starting address is 0.
/WCS=ysed to specify the WCS is to be the target of the load. .
/P or /V=force either physical or virtual main memorv.

MICROSTEP COMMAND

syntax: M[<sp><count>}<cr>

' Semantics: The CPU is allowed to execute the number of micro-

’ instructions specified by the number <count>.If no
count is specified the console enters SPACE-BAR=-STEP mode,
Each time the space bar is hit one microinstruction is

executed,
Response:? <er><lf><tab>"halted at <contents of micro PC>"
"NEXT COMMAND
stntax: N[<sp><count>]<cr>
Semantics: The CPU is allowed to execute the number of MACRO~-

instructions specified by the number <count>.,If no <countd>
is specified the console enters SPACE=-BAR=-STEP mode,

.esponse:

START COMMAND

Syntax:
Semantics:

Response:

TEST COMMAND
syntax:

semantics:
.@ualifiers:
Response:?

X COMMAND
Syntax:

Semantics:

Aualifiers:

Response:

CONTROL C

CONTROL O

<cr><lf><tab>"halted at <contents of PC>"

s<sp><address><cr>
or
S/C<sp><address><cr>

S <address> inits the CPU,lo0ad s the address into the PC
and starts MACRO instruction execution.

S/C <address> deposits the <address> into the MICRO=-
PC and starts the system clock in free running mode,

<cr><lf><prompt>

T<Cr>

The console subsystem will execute a self check to
insure its own integrity.

/D=causes CPU micro=diagnostics to be run upon successful
execution of the console self=-test,

To be determined.Some sort of message code,

Mot fully defined at this time,

This command is to be utilized bv the APT (Automatic
Processor Test system), and the RD (Remote Diagnosis),
systems for loading binary data to either the CPU’s main
memory or the WCS option,Upon receiving the X command the
10ocal echo is turned off,a byte count and checksum is

is received and binary data is transferred to the CPU,

This allows dlagnostics (both MACRO and MICRO), to be loaded
for verification and trouble=shooting of the CPU,

/WCS=allows the WCS option to receive binary data.

Mot defined,

CONTROL AND SPECIAL CHARACTERS

Causes the suspension of all repetitive console
operations.

sunresses or enables console terminal output,

.ONTROL P Enters the terminal to console mode,
CONTROL U Deletes all characters typed in a command line,

CR Terminates a console command line,

BRIEF INTERFACE DESCRIPTION

The physical location of the console in the 11/68 is as vet undefined,
It must be positioned in a way that it may get at the internal data bus of
the CPU and also have a window to the UNIBUS.,Incorporated into the
console will be the SLU (Serial Line Unit), and LFC (Line Frequency Clock),
functions now provided by the DL11=W option.The console load device (TU58),
#ill also be able to be accessed from the UNIBUS to facilitate using the
TUS8 for software and possibly MICRO=-CODE patching,

APPENDIX A

Midrange Systems Console Functional

Specification

MIDRANGE SYSTEMS CONSCLE FUNCTIONAL SPECLFICATION

ABSTRACT
This specification detines the
functions & comumand syntax of ASCIl CO#NSCOLE

implementations for future processors developed by
Diqgital’s Mmid=range Systems Development eEngineering,
The ASCII COUNSOLE provides a programred interface
between an operator 4f a conscole terminal, and a
given CPU’s hardware and software, A minimum suybset
0of console commands 1s detined, as are areas for
individual machine=specific growth of functionality,

Revision History:

Rev, #

1}

2,9

Description Author Revised Date

Ooriginal Compilation Ke OKIN 22=JUKE=1578
(Condensation of 11/78¢ Spec,)

Edit after Internal Review K, OKIN 28=JUNE~1978
on June 23,1978

Digital Equipment Corporation COMPANY CONFIDENTIAL Page 2
.CII CONSOLE FUNCTIONAL SPECIFICATION)

1,6 INTRODUCTION

This specification defines the command functions and syntax of the
ASCII CONSCLE to be impiemented on future DIGITAL Mid~range CpPlis, 1he
ASCII CONSOLE provides a progqrammed interface between an ovperator at the
console terminal, and tke CPU hardware, micrococe, ana ISP software,
The console interfaces to0 an operator via a c¢onsole terminal (e,g,
LA36), and interfaces to the CpPU via a hardware interface, The consocle
interprets operator commands typed at the console keykoard, and pertorms
the appropriate operations for each command by means of console software
and/or CPU microcode, The console functionality is the -eguivalent ot
traditional CPU contrel anag status functions performed by a “lights and
switches’ console panel, #nen it i{s not ir ‘Console Mode,’ the console
terminal may also be used as a user terminal to communicate «ith an
operating system,

The console command syntax will conforin to the “*DEC Commahg
Language Standard” (DCLS), or to a sub=set thereot,

2,0 CONSOLE FUNCTIONAL DESCRIPTICON

. This section describes the functions provided by the console,
These functions are described 1in terms of the actions that may be
initiated via console commands, however the actual comrrand syntax used
to implement this functionality 1s not discussed in this section,

2,1 CONSOLE PANEL EQUIVALENT FUNCTL1ONS

The c¢onsole panel eqguivalent functions include starting anrdg
stopping the CPU Instruction Set Processor (IS¥), reading and writing
main memory., 1/0 registers, and processor & Iinternal registers, and CPU
execution control,

2,141 CPU ISP CONTROL

The functions listed below must be provided bhy the console ¢to
permit initiation and terrinatien of ISP=Level program execution by the
CPU,

i, CPU Initialization: The CPU can be 1initialized by setting
certalin CPLU logic elements to a definec state,

2, ISP Execution Initiation: ISP-Level instruction execution can
be initiated in the CPU, The CPU prograr counter (PC) contents
will specify the memory address where iInstruction executicn
will begin, :

Digital Egquipment Corporation COMPANY CONFIDENTIAL Page 3
‘CII CONSOGLE FUNCTIONAL SPECIFICATION

~

e

ISF Execution Stop: CPU IsSP=Level Instruction execution mav be
stopped,

2.1.2 DISPLAY ANLD MODIFTICATION OF HMENMCRY BLEMENTS

The console must provide for the display ana modification of memory

elements

in the system, including elements In the main memory, 170,

General Register (R¥ to Rn), Internal Processor Feglister (VAX only), and
Macnine Dependent Register addressing space, Tne address and data raaix
is architecture dependent; HiX for VAX implementations and OQCTAL for
PDP=11 implementations, '

1,

2,

3.

The

Mailn memory or 1/0 elements €3n be read ang written as bvte (&
pits (optionall)), word (16 bits), longword (32 bits (VaAX onlv))
quantities,

CPU General Registers are read and written as long word (32 pit
VAX) or word (16 bit PDP=~11) quantities, 7The general registers
are RO thru R13(VAX) or R¥ thru RS(PDP~11), 5P, and FC,

CPU 1Internal Processeor Registers exist only in Vax
implementations, and are read or written as long wora
quantities, The Internal processor Reglster space includes the
architectural registers descriped Iin Chapter 9 of the VAX SK#M,
and other machine dependent reglsters available to an ISF level
program through a MIPR of MFPR instruction,

CPU Machine Dependent FKegisters are read or written as word
(PDP=11) or long word (VAX) gquantities, The tachine Dependent
Register space 1includes all the implementation specific
registers which exist for a given machine, This is a defined
area of incompatability:; the Machine [ermendent registers ¢n
one CPU will probakly pbear no resemblance to any other CPU,

2,1,3 CPU EXECUTICON CONTROL

execution control modes avallaple as optional console

functionality may 1include bootstrapping, single instruction step, ana
single nicroe=instruction step, :

1,

2,

Single instruction step mcde (when imnlemented) will allow (CPu
IsP=Level programs to bhe executed one inpstruction at a tiame,
This mode causes the CPU to enter the hnalt state after the
executlion of an instruction is completed,

Single Micro Cycle step mode (when implemented) will cause - tine
CPU microsequencer to stor each time a new micro=instruction is
about to be executed, The processor will remain in this state

Digital Equipment Corporation COMPANY COWNFIDENTIAL | raqge 4
‘CII CONSQLE FUNCTIONAL SFECIFICATION

until 44t {s teold either to resune normal execution or to step
another micro state,

3, Bootstrap: The (PU can be *Bootstranped’, A bootstrap
sequence may consist of loading the CpPU main memory with a
specific file from the (Console Sub=system load device, and
initiating CPU ISP~Level instruction execution at a pre=detined
address after the loaa, Certain implementations may not have a
load aevice, and willi merely initiate execution of an ISP ROm
boctstrap program, while passing parameters to that program to
specify the the exact bootstrap device,

2,2 DEFAULTS AND KADICES

The RADIX of a qlver console s architecturally defined and will te
constant across a gilven family, Tne addressirg space and data lengtn
referenced by console commands is not constant, and 1is selectabple by
command qualifiers, The following defaults will pe used by the consoles
upon power ups

Address Type Physical
Radix HEX (VYaX)
Radix OCTAL (PDP=11)

Long wWord (32 Bits VAX)
word (16 EBits FDP=11)

bata Length
Data Length

2.3 ABBREVIATIONS

Due to a possible lack of console program srpace, the consoles for
this <¢lass o0f nmachine may not be able to accept the entire english
spelling of a command name, The following standard w#ill be adhered to:

At the time of tnelr {implementation, ALL
consoles MUST recognize the HINIMUM abbreviations
for their implemented commands as defined In this
spec, Depending upon the programming space
avajilable, the implementor may allow a given console
to accept longer strings as a command (example: S,
or ST, or STAKT, for start.)

However, should the console recognize onlv S ,
it should NQT accept & longer string wHICH 1T CanpQT
VERIFY, Should a longer string be typed as a
command, the console should return an error message
and not execute the command,

Digital Equipment Corporation COMPANY CONFIDENTLAL Page §
‘CII CONSOLE FUNCTIONAL SPECIFICATION ‘

This restriction prevents a user from tvping one command and naving
the c¢onsole execute another, potentially destructive, comrand, It also
preserves a common command set accross c¢onsoles, namely the shortest
abbreviation ©vossible for a glven command, This 1implies that all
consoles will process a S 1J@<CR> as a start command, and should some
console coumand be added to this spec wnleh alse starts with the letter
S, the minimum abbreviation for that new (hypothetical) commana will
consist ot at least two letters,

2.4 TYPING ERRURS

Some consoles of this class will parse the input string as 1t s
typed, It 1s thus may not be passible to "erase" errors bty tyoing a
rubout (or delete) character, iHoweyer, should a given console not pegin
parsing a 1line until the receipt of a carriage return, it may allow
rubouts to erase characters already typed, It this Is allowed, when the
rubout is typed tnhe console must echo the character being deleted (after
printing a backslasn(\) upon receint of the ¢tirst rubout), and the
console must also add a backslash petween the last rucout tvped and the
next input character,

Example: {f the operater types: l2er<rubout><rubout>34,
the console must print: 12er.\re.\34
and will act as 1if: 1234
was typed,

Any glven console will accept only certain characters as a command
(i,e, the tirst letter typed on a line,) Once a valia commadg character
is recognized, the syntax defines the next permissible character or
Characters., Whenever the c¢onsole receives a cnaracter wnich is notg
permissipble in the syntax or represents an unimplemented command, it
will 1ignore the rest oOf the line (unless a control U or control C is
typed) and print an error Message upon receipt of tne carrlage return,

Digital -Equipment Corporation COMPANY CONFIDENTIAL Page o
CIT CONSQLE FUNCTIONAL SPECIFICATION

2,5 SUBSETTIMNG

The console default data length 1s arcpitecture derenaent, all
consoles MUST implement the following commands and qualifiers:

/P
/G
/1
/L
/W

m o0

> - X

Pnysical address space qualifier is defauit
General Reglster address space

processor Internal Reugister address space (VAX only)
Long werd data lenath is default (VAX only)

word data length qualifier is default on PDP=11
and necessary on VAX implementations to retference
UNIBUS physical address space

Continue

Deposit into memory, registers, or I/0 space
(data length default is arcnitecture dependent)
Examine memory, registers, or 1/0 space

(data lengtnh default is architecture dependent)
Halt

Init

Binary load command

The remaining commands and qualifiers descrired in this snec are

ptional, 1i,e.

they are not reguired to exist, out if they ao exist in

a given implementation they have the syntax and eifect descriped herein,

Digital Equipment Corporation COMPANY CONFIDENTIAL . Page 17
4ASCII CONSOLE FUNCTIONAL SPECIFICATION ’ .

2,5,1 RECOMMENDED SUBSET

The following list of commands and qualifiers should be used as a
guideline ¢for implementors, If a given console will implement a subset
of all possible commands, the ones closer to the top of the 1list should
be implemented first, with the others added as toime and space allow?

6 manditoery commands, /1 (VAX only) and /G

s sStart

B Bootstrap

T Self test command

/B Byte data length

/M Machine dependent Internal Reygister space
/v Virtual address space
N Next command

/N NexXt qualifier

M Microstep command
/%CS WCS qualifier

R Repeat command

2,6 SUPERSETTING

It is concievable that a given CPU might want to implement a
command not specified in this spec, The new command MUST nave an
unique, distinct, aobreviation assigned to it, or it must start with a
different letter from any of tnhne commangs described here or in the
Console Spec for the 11/780, Cn¢ce the character denoting the new
command has been accepted by the architecture group, that command and
its abbreviation will be entered into this srec, If some other
implementor wished to add another command with different functionaiity,
{t MUST be assigned another unigue abbreviation, Tnhis will insure tnat
commands and their abbreviations have unique functionality wherever tney
are implemented,

Dicital Egquipment Corporation CGHPANY CONFIDENTIAL Paqela
CII CONSOLE FUNCTIONAL SPECIFICATION

]

<SP>

<COUHT>
<ADDRESS>

<DATA>
<QUALIFIER>

.INPUT-PROMPT>
<CR>

<LF>

3,2 CONSOLE COMMAND SYNTAX & SEMANTICS

Angle brackets are used to denote category hames, A
category name Is a label used to name a category,
For example, the category name <address> may pe used
to represent any valid address, instead of actually
listing all the strings of characters that can
represent an address,

Brackets surrounding part ot ar expression indicate
that part of the expression is ootional,

represents one space.

Represents a numeric¢ count in the RADIX of the
architecture,

Represents an address arqument, See section 5,2,1
for a list of valid <ADDRESS> tvpes,

Represents a numerlc argument,

A command modifier (switch), See section 5,
Represents the conscle’s input prompt string °>>>°,
Carriage return,

Line teed,

3,1 NOTATION EXAMPLE

E(<QUALIFIER=LIST>) [<SP><ADDRESS>]<CR>

The explanation of the examine command is as tollows:

1, An examine command may optionally contain a list of one or more

qualifiers,

2, An exanmine command may optionally contalin an address argument,
If the address 1s specified it must pe preceded by one space,

Listed pelow are several examples of valia exdamine commands,

E<CR>
E/B/V<CR>
E/V/B<CEk>

E<SP>123456<CR>
E/W<SP>123456<CR>

Digital Equipment Corporation COMPANY CONFIDEWNTIAL Page 9
‘SCII CONSOLE FUNCTIONAL SPECIFICATION

4,1 BOOT Command
SYNTAX:

SEMANTICS:

RESPONSE!?

1) After
respo
be di

<) Boots
syste
passi
loadi
boots

4,2 CONTINUE Command

4, COMMANDS

B[<SP><DEVICE=NAME>]<CR>

<DEVICE=NAME> is of the following format ‘DOn‘.
where DD’ is a 2 letter device mnemonic (such as LT
for DEC=Tape), and ‘n” is a one=d4iqit unit number,

If no <DEVICE=-NAME> is given with tne boot command,
the console will perform the boot seguence for the
default system device by either starting a &Om
boostrap with predefined parameters, or oy loading
and executing a specific opootstrap program naned
DEFBOO.EXE from the conscle load device, This
program contains code which will bootstras the
system from a selected default device,

If a <PEVICE=NAME> 15 given with the command, tne
console will either calculate the correct parameters
to be passed to the ROM bootstrap (or decide which
ROM bootstrap to execute), or Lt mavy execute an
program nared ddnik00.EXE, where ‘ddn® iIs the
<DEVICE=NAME> given,

Example:

‘B RP2’ = will cause the console to either
pass parameters to the ROM saving to boot
from the ¥°th device on the first R4, or
it may execute a orogram file namec
*RPUOBOQEXE”,

(Console enters proqram 1/0 mode, after starting the
ROM program or executing the command file,)

NOTES

CPU bootstras completion, a
nse from the operating system will
splayed on the console terminal.

traps from devices other than the
m default device are perforred by
ng difterent parameters or oy
ng and executing different
trap programs,

igital Equipment Corporation COMPANY CUNFIDENTIAL Page 1¢ -
CII CONSOLE FUNCTIONAL SPECIFICATICN '

SINTAX: C<CR>

SEHANTICS: The CPU ISP regins instruction execution at the
address cuyrrently containea 1n the CPU progranm
counter (PC), CPU initialization is ’NOT”
performed, The Console enters “Program i/0° mode
after issuing the Continue ¢to the [SP, Tals
command may be used to return the console to
*program [/0’ mode even if the (PU was already

runnina,

RESPONSES CCR><LF>(Console enters *Program I/0° Mode)

4,3 DEPOSIT Command

SINTAX: DI<GUALIFIER=LIST>]<SP><ANDKESS><KSP><UATA>LCCR>

QUALIFIERS:
IRy /Wy /Lo /lp /s /P /1s/Me /Gy /8CS, Refer to section
8 for a description of qualifiers & defaults,

SEMANTICS: Deposits (i.e., writes) <DATA> into the <AODRESS>
speclfieq, The Address space used will depena
upon the Wualifiers specified wlth the ccmmand,
If no Qualifiers are used, the current
AddresseType default will aqetermine the Address
Space to be used, (PHYSICAL, VIRTUAL, THNTERHNAL
REGISTER, GENERAL REGISTER,]).

RESPONSE: <CROSLF><INPUT=PROMPT>

NOTE

In certain optional implementations.,
<ADDRESS> may also be one o©of the
following symbolic addresses:

PS e=Deposits to the processer status
word (PDP=11).

P8, =Depeosits to the processer status
longword (VAX).

EC =peposits to the program counter
- (General PRegister 7 (PDP=11) or F
(vaXx)).

SW <peposits to the Switch Realster
(isp reads from loec 17757¢ on
PUP=11’s CNLY)

SP =peposits to the stack pointer

Digital Equioment Corporation COMPANY CONFIDE&TIAL
BASCII CONSOLE FUNCTIONAL SPECIFICATION

Rn

(General Redgister 6 (pPDP=11) or E
(Vax)),

=Deposits to General kegister n,
*n’ is a number in the architecture
default radix, Use of the ‘*/G°*
guallfier is not necessary when
Rn” 1is typed, Example:

D/G 5 1234 has the same effect as
D RS 1234

=Deposits to the location
immediately following the ‘Last’
location referenced, For vphysical
and virtual references the location
referenced will pe the ‘Last
Address’ plus ‘n* where n=1 for
Byte, 2 for word, 4 for lLongword,
For all other Address sgaces ’n’ is
always equal to 1,

=Deposits to the location
immediately preceeding the “Last’
location referenced,

=Deposits to the 1location last
referenced,

=Deposits to the Ladress
represented by the fLast Data’
examined or deposited,

Be.G, *E SP* =« Examines tne
Stack Pointer,

‘D @<DATA>’ = Deposits <DATA> to
the location specified bty the
contents of the stack pointer,

Page 11

igital Equipment Corporation CCHMPANY CONFIDENTIAL Page 1¢
C1I CONSOLE FUNCTIONAL SPECIFICATION ' . :

4,4 EXAMINE Command
SYNTAX EI<QUALIFIER=LIST>] (<SF><ADDRESS>)<CR>

QUALIFIERS:
/B;/w'/Lp/Nl/Vl/Pl/Il/?"u/G'/WCS. Refer to section
5 for a description of gualifiers & defsults,

SEMANTICS: Examines (i.e, Reags and displays) the contents
of the specified <ADLRESS>, If no <ADDRESS> is
specitied, the current <DEFAULT=ADDRESS> is
examined,

RESPONSE? CCRP<LF><TAB><ADDRESS=SPACE=IDENTIFIER><ADDRESS>
SDATA>DKCR><LE>SINPUT=PRUMET>
NOTE

<ADDRESS>» may also be one of the
following symbolic address nhames:

PS =Displays the processer status word
(pDP 11),

PSL =Displays the processer status
longwora (VAX),

PC =Displays tne program counter (as
in deposit)

SW =Displays the Switenh kegister (on
PDP=11’s only as in deposit)

SP =pisplays the stack pointer (as 1in
deposit)

RN -Displays General Register ‘n’ (See
Deposit command,)

+ =Displays the location immediately
following the last location
referenced,

. =Displays the location immedjiately
preceeding the last lecation
referenced,

* =pisplays tne last location
referenced,

] =Disrlays the location whose

<ADDRESS> is the *Last Data’
deposited or examined,

Digital Equipment Corporation COMPANY CONFIDENTIAL Fage 13
ASCII CONSOLE FUNCTIONAL SPECIFICATION

Sample Examine Responses? (console output underlined)

22> E/P 1234

P ©8v61234 ABCDEFE®

2>> E/V 1234

P ©0@u5634 01234567

NOTE: That the translated physical Address is
‘displayed for Virtual Examines

>>> E/G o

G G00U0AY 98765432

4,5 INITIALIZE Command

.m’rAx: I<CR>

SEMANTICS: A CPU system initiailze is performea,

RESPONSE} SCR><LF><INPUT=PROMFTI>

4,6 HALT Command

SYNTAX: H<CR>

SEMANTICS: The CPU ISP will stop instruction execution after
completing the execution o0f the instruction bveing
executea when the console presents the HaAalLT
request to the CPU,

RESPONSEs <CONTENTS OF CPU PC><CRI<LE><INPUT=PROMPT>,

4.7 LOAD Command
SYNTAX: LI<QUALIFIER=LIST>]<SP><FILE=SPECIFICATIONDLSCR>

SEMANTICS: The Loaa command is used to reaa file data froam
the console’s loaa device to main menmory, or to
the writable control store (wC3)., If no qualifiar
is given with the Load command, physical main
memory is loaged, .

QUALIFIERS: 1) /S:<ADDRESS>

Digital Equipment Corporation CONMPANY CONFIDENTIAL . Page 14
CIT CONSOLE FUNCTIONAL SPECIFICATION

Tne *START* Qualitier is wused to specify a
starting aadress for the load, If no "START”"
Gualifier is given, the conscle will start loading
at Address 9,

2) /WCS
The *wCS” Gualifler is used to specify that the
writable control store is to be loaded,

3) /P or /V
The *Physical’ or *virtual’ Qualifier is used to
force either physical or Virtual main memory as
the destination of the load,

NOTE

If no qualifier for address space (WCS,
Physical, Virtual)., the destination of
the LOAD is physical main memorvy.

..8 MICROSTEP Command
SYNTAX?® M{<SP><COUNT>)<CR>

SEMANTICS: The CPU s allowed to execute the number of
MICRO=instructions indicated by <COUNT>, If no
<COUNT> is specified, one instruction is
pertormed, and the console enhters *SPACE=BAR=STEP®
mode, (See Section 4,9,1)

The Console enters ‘Program I/0* pode immediately
pefore issuing the Step, and re=enters ‘Console
I1/0* Mode as soon as the Step completes, The ISP
may be restarted by tyming *C’, and will continue
executing the current instruction, Typing an °nN°*
will cause the ISP to finish the current
instruction before halting,

RESPONSE: <CR><LF><TAB>'”MICEO PC= <CONTENTS OF HICRO
PC>" :

4,9 NEXT Command
YNTAX: NI<SP>XCCUNI>]<CR>
SEMANTICS: The CPU is allowed to execute the numper o0f

MACRO=instructions indicateé¢ by <CuUnT>, If no
<COUNT> is specified, one instruction is

Digital Equipment Corporation COMPANY CONFIDENTIAL Page 15
ASCII CONSOLE FUNCTIONAL SPECIFICATION :

performed, anda the conscle enters *SPACE=bBAR=STED®
mode, (See Section 4,9.1)

The Console enters ’Program I/0° Mcde immediately
before 1issuing the Step, and re=enters “‘Console
I/0° Mode as soon as the ster completes,

RESPONSE: <CR><LF><TAB> "HALTED AT <CGNTENTS OF RC>®
4,9,1 SPACE~BAR=STEP Feature

1. Each time a ’NEXT® or MICROSTEP’" command with no <«<CoU&T>
argument 1is given to the console, the Step 1s executec 3ng
then the conscle may enter "SPACE~BLR STEP" mode, Eacn
depression of the SPaCE=BAR will cause 1 Step of the flaver
currently enabled (kicro Cycle, Instruction), T

2, A *NEXT * or *MICROSTEP’ command with arn argument will not
enable the Space=RBar feature,

E.GQ "NEXT 2" will cause 2 instructions to pe executed, then
the console will prompt for another commang,

3, Exiting "SPACE=~BAR STEP" mode = Type any character excent
"SPACE" to exit "SFACE=BAR STEPR" mode,

4,19 REPEAT Coinmand

SYNTAX: RESP>KCOHSOLE COMMAND>

SEMANTICS: R <CONSGLE COMMALD>*® causes the console to
repeatedly execute the <CONSCLE COMMAND> specified
until execution is terminated by a Centrol=-C (=C)
(see Section 5,1), Any valid console commanc say
be specified for <CONSOLE COMMANDD> with the
exception of the °repeat’ cormand,

RESPONSE? <dependent uyron command specifiea>

4,11 START Command
SYNTAX: S<SP><ADDRESS><CR>
or
S/WCS<SP><ADDRESS><CR>

SEMANTICS: 1) *START <ADDRESS>?
The start ccmmand overforms the eguivalent of the

Digital Equipment Corpdration COMPANY CONFIDENTIAL Page 1o
CII CONSOLE FUNCTIONAL SPECIFICATION
following sequence of conscle commands:?
1, A CPU system *initialize’ is performed,

2. <ADDRESS>» is deposjited into the C(PU
program counter (¢C).,

3, A ‘continue’ is issued to beain CPU ISE
executicn, :

RESPONSE <CR><SLF>

The console enters ‘Frocram i/0* mode,

2) *S/WCS <ADDRESS>*
1., <ADDRESS> is deposited to the Microe=PC,

2, The CPU mlecroseguencer beains
execution,
RESPONSE$ SCROPSLF><CINPUT=PROMPT>
.. 12 Test Command
SYNTAX: T<KCR>
SEMANTICS: The console subgystem will execute a self test,
checking to insure its own integrety.
QUALIFIERS: /D
The.’Dlaqnose' Qualifier 1s wused to cauvse (PU
microdiagnostics to be run ypon sucessful
completion of the seli test,
4,13 Binary Load Command
SYNTAX: X[(<GUALIFIER=LIST>}<SP><ADDRESS><SP><COUNT><CR>
QUALIFIERS: /Pe/WCS
SEMANTICS: ' The consolevwill prepare to recejive a string ot

binary data to be loaded into the address sdace
specified by the <KGUALIFIER=-LIST>, Once the
command has been parsed, the console will cease to
echo input bytes received, The first byte cof data
{s a CHECKSUM of the AaSCII characters wnich
comgrised the command string, and will not be
loaded into filemory nor will <COUNTD> e
decremented, If the checksum does not compare.
the console wjill respond with an error messagey

Digital Equipment Corporation COMPANY CONFIDENTIAL

‘LI CONSOLE FUNCTICNAL SPECIFICATION

re~enable echo of receivea characters, 1issue its
input prompt and await another command, This =ill
prevent inadvertent entry into a mode where the
conscle 1s accepting the next several tnousand
input characters as data with the only way out
peing to turn power off,

once the console has verlifjied the byte
checksum of the input string, it will deposit the
data WORD by %ORD into memory, If the <CGUMT> was
odd, the last byte «ill be byte ¢ of the last
word., As the console 1s depositing tne data it is
also adding tne words together to form a3 checksum,
and examining (if possible) the data it Just
stored to assure data inteqrity, 1If the <CoUuT>
is odd, the last word aqgded to the checksum will
have ¥’s in the high byte,

Once the <CQUNT> is exhausted, tne final two
bytes transmitted will be the WORD CHECKSU# of all
the data, witn the 1low byte sent first, The
console will compare tne checksum anc respond with
an error message the received and computed
checksums don“t match, In any case, the console
will re=enapmle echo, issue ar 1input prompt, and
awailt the next command,

Page 17

Digital Equipment Corporation COMPANY COHNFIDENTIAL rFage 18
‘II COUNSOLE FUNCTIONAL SPECIFICAT1OH

S.,2 Commands Perfcrmed Whiite CPU is Runnina

Depending upon iwplementation, console commands may reguire trat
the (CPU ISP be halted in order for the command to be executed,
However, some console implementations mavy aillow execution of certain
commands while the ISP is running, ©The only restriction upor this is
that the console should guarantee to have no eftect ugpon the proaranm
currently runninc should an operation be performed whicn results in an
error,

If a particular command may not be eXecuted while tne CPU |is
running, the console will respcnd with an error printout,

5.1 Control Characters & sSpecial Characters

This section lists tne control characters and special characters
recognized by the console adaptor, and descrives their function.

CONTRQL=C("C) Causes the suspension of all repetitive console
operations such as:

1, Successive operations as a result of a /next
aqualitier,

2, Repeated command executions as a result of a
‘repeat”’” command,

CONTROL=0("Q) Suppresses/enables console terminal output
(toggle), console terminal output is always
enapled at the next console inpbut proaot,

CONTROL=P("P) Enters “"Console Mode” (it Kkey switch is not
LOCKED,) Characters typed are now fielded by tne
console, not the ISP,

CONTROL~U("U) ®U tyred before a Jline terminator causes the
deletion of all characters typed since tne last
line terminator, The console echoes:
f*UKCR><SLF>"

CARRIAGE RETURM<SCR> Terminates a console command line,
5,2 COMMAND QUALIFIERS AND DEpAULTS

Q Gualifiers are used within a command to specify the tvpe ot
ressing and the length of data arguments (Sections 5.2.1 & 5.2.2).
Qualifiers may be typed In any order, Defaults are aprclied by the
console when a command qoes not contain & aqualitier specifving

Digital Equipment Corporation COMPANY CONFIDENTIAL Page 19
‘II CONSOLE FUNCTIONAL SPECIFICATION

address=type or data=length, (Section$,3)

Certain commands permit an address argument to be defaulted (Section
5.4), Tne <DEFAULT<ADDRESS> used by the console 1s the next address
following the last virtual, physical, or register aadress accessed by
an examine or deposit command, Kote that the next address is
dependent upon dataw=length, since a bvte reference updates tne
<Default=Address> by 1, while a 1long=word reference updates the
<Default=Address> py 4,

The */N°® qualifier allows an examine or deposit command to orerate on
more than one address (Section 5,7), -

5,2,1 GQuallfiers for Address=Tyre

Qualifiers for address=type are used within a command 1llne to
specity the type of an address arqument as either a virtual memorv or
I/0 space, Physical memory or I/0 space, General Register, Processor
Internal Register (VAX only), sachine Dependent Internal Feglster., or
Writeable Contrel Store, The aualiflers for the respective types of
addresses ares °*/V°, */P*y */G*y, */1I°%, *rM* ,*/VWCE’,

NOTE

Virtual Addresses that reference
non=existent or non=resident pages will
cause the console to abort execution of
the congole command that referenced the
virtual address, In each case, an
appropriate error message ¥111 ©be
displayed on the console terminal,

Example: To examine virtual address 1234, an onerator would tyoe:
E/V 1234
The Console will display the phvsical address corresponding
to virtual address 1234, and the contents of that adaress,

5:.2.2 Defaults for Address 1Types

The console till rememher the last address qualifler typed, and
use that address qualifier as the default address space for sucessive
‘mands. when the console powers up, the cefault address space 1is

sical.

Digital Equipment Corporation COMPANY CONFIDEHTIAL £age
MRCII CONSOLE FUMCTIONAL SPECIFICATION .

5,23 Qualifiers for Data Length

Gualifiers for data length are used within a commana 1line to
specify the length of a data quantityv assovuated with the command,
Data length may be speclfied as eithe byte, word, or long wora (VAX
only) by means of the’/B’, */w’, or */L’,

Example: The following command will «aisplay the bvre at address
1233,

*E/B 1233°
5.2.4 Defaults for Datae=lLength

The console remembers the last data length aqualifier wnich «as
typed, That data 1length 1s wused as the default data lengtn tor
sycessive console commands until a new data lenath 1ls specified, The
consocle initially uses a default data length of word for PRP=11’s ano
long word for VAX’s,

Digital Eguipment Corporation COMPANY CONFIDENTIAL ¥age 21

‘II CONSOLE FUNCTIONAL SFECIFICATION
5.3 Default~Address Facility

Each time an Examlne cr Deposit command is executed, tne console
computes the address of the next memery 1lccation following the
location reterenced by the Examine or Deposit, The address c¢f the
next memory location is termed the <DEFAULT=ADDRESS>, since an examine
command that does not specify an address will reference the next
address by default, (See example below), The console computes the
<DEFAULT-ADDRESS> as f£ollows:?

<DEFAULT=ADDRESS>=<pddress used by last Examine or Deposit>+n
where "n" is 1 for byte reterences

2 for vword references

4 for long=~word references

The following example shows a seguence of console c¢commands, and the
value taken by the default address "after" each command is executed,

Example of default address facllitv: (All numbers are Hex)

COMMAND ADDRESS USED <DEFAULT=ACDRESS> AFTER EXECUTIOwn
QS 2341 2341 2342

E/nW 2342 (USES<DEFAULT=ADULRESS>) 2344

E/L 2344 (USES<DEFAULT=ADDRESS>) 2348

£ R GEMERAL REGISTER © | GuNERAL REGISTEr 1(H1)
E/G E GENERAL REGISTER E(SP) GENERAL REGISTER F(£C)

E PC (USES<DEFAULT=AUDRESS>) GENERAL REGISTER @(R#)

Note that the <DEFAULT~ACURESS> is R9 following a FC reference,

5.4 Specifving the <DEFAULT~ADDRESS> in a Command

The symbol *+* can be used as an address argument in a Devosit or

command, to represent the <DEFAULT~ADDRESS>, 1Tris sympol is provided
depositing to successive locaticns, without having to type the addaress
atter tne first deposit,

deposit commands can be used:

2

6mple: To *TOGGLE=IN’ & prograr starting at aadress 123456, tne

D 123456 <DATA>

pFxXxamine
to cernit
araument

tollowing

Digital Equipment Corporation COMPANY COnthEmTIAL Page 2%
‘II CONSOLE FUNCTIONAL SPECIFICATION

D + <DATA>

D + <DATA>
etc,

Each Ueposit command, after the first, puts the <DATR> intc the next
successive memory location.

5.5 Speclal nNotation for Last Address

The last (virtuval, pPhyslcal, General Register, Internal kegister, or “(CS3)
address referenced via an examine or deposit commana i{s denoteoc by an asterisk
(#), The <Last=Aadress> may be used as an argument to an examine or oageposit
command by typing an asterisk In liey of the address argument,

Example:
fE 1234°
will display the contents of location 1234,
1f the next command issued is:
‘D # 356°

The console will deposit the numper 356 into aadress 1234,
5,6 Specia)l nNotation For ‘kreceeding Address”

The symbol °=* (minus sign) may be used as an <ADDRESS> in a deposit or
examine command to sveclfy the location immediately preceeding tnhe last location
referenced,

5,7 Use Of ‘Last Data’” As An Address Argument

The symbel *&@* may be used as an <ADDFESS> in a deposit or examine command,
The last <DATA> examined or deposited will be used as the aagdress,

5.8 The /N Qualifier
The /Next qualifier is provided to permit examine ano deposit commands to

‘rate on multirle sequential addresses, [he Syntax ©0f the /nexXxt gualifiexr is:

<SLASH>N[:<COUNT>]

Digital Equipment Corporation COMPANY CONFIDENTIAL Page |
. ASCITI CONSOLE FUNCTIONAL SPECIFICATION

The <COUNT> argument specifies the number of additional executions of tt
command to be performed after the initial execution., The default value f£¢
<COUNT> is one, .

Example #1 The command:
E/B 1236/N32
is evaluated by the console as follows:

1, The console initially evaluates the command and applies ar
applicable default valuyes,

2, The command with applied defauylts is executed, The conso)
displays the contents of locatlion 123¢¥, and updates tct
<DEFAULT<ADDRESS> to 123i,

3. The /Next switch is now evaluated bv the console, Tne consol
repeats the command operation the nuinher of times indicated t
the <COUNT> argument, Eacn execution uses the <DeFAULT=ADDRESS
for 1its address arqument and updates tne <DEFAULT=ADDRESS
afterwards, In the above example, locations 1231 and 1232 ar
successively displayed, Tne final value of tne <DEFALLT=ADDRESS
will be 1233,

Example #2 If the command:
E/N32
1s issued following the command 1n exahple #1, the contents o
locations 1233, 1234, and 1235 will re displayed. Since the examin
command does nct contain an address argument, the initial executio
of the command will use the current <CEFAULT=ADDRESS> wnich was 123
following the ccmmand in example #1,
NOTE
When using /next qualifler to examine or deposit multiple CPU
general registers, the f‘next’ register after the progran
counter (PC) is defined to be RO,
Example #3 The command:
kL/N2S5/G D

will display the contents of R13, SP, PC, PR&, Rl and R2 in tna
order,

Digital Equipment Corporation COMPANY CONFIDENTIAL Fage 24
‘II CONSOLE FUNCTIONAL SPECIFICATION

6.8 CONSOLE COMMUNICATION WITH THE OPEZERATING SYSTEH

The console adaptor’s terminal, in addition to being the censole adaptor’s
input device, also serves as tne operating system operator’s terminal, 7The
console adaptor iIs said tc be in *Program I[/0 Mode’ when the console terminal is
being used as the operator’s terminal, The conscle adaptor is in ‘console I/{
Mode’ when the console terminal is being used to perform traaitional conscle
panel functions, and CFU hardware test and debug fynctions (che functions
defined in sectiens 2 thru 5 of this specification),.

6.1 Console 1/0 Mode

when the console adaptor is in ‘*Console 1/0° mode, the c¢onsole terminal
serves as the operator interface to the c¢onsole adaptor’s console panel
functions c¢efined by thils specification, All console terminal input is
interpreted by the console adaptor, and appropriate console adaptor tunctions
are invoked, Console terminal input 1s not passed t¢ any CPU [SP=-LEVEL
software, The console will not accept any output from ISPe=level software
running in the CPU, This implies that operator terminal output ang systew
communication with the console’s load device (if implemented) are disabled while
6 console is in console 1/0 mode,

6,2 Program I/0Q Moade

when the console adaptor Is 1in ‘program I/0Q° rmode, console terminal irgut
is passea, character by character, to CPU ISP~LEVEL software, All valigity
checking, etec, 1is performea by the CPU software, 7The console adaptor operates.
transparently with respect to the CPU software, All terminal outrut from the
CPU software is passed directly to the conscle terminal,

6,3 Console 1/0 Escape to Proaram 1/0 Mode

The console I/0 escape sequence causes the console adaptor to transition _

from console 1I/0 mode to program I/0Q0 mode, The console 1/0) escape sequence is
the console command:

C<CR>*

NOTE

The console commands: *s*, ‘mM*, and *¥* also
enable program I/Q mode,

Digital Equipment Corporation COMPANY CONFIDENTIAL Page 25
‘II CONSOLE FUNCTIONAL SPECIFICATION _

6,4 Program 1/0 Escape to Console 1/0 Modge

The program I/0 escape sequence causes the ccnsole adaptor t¢ transition
from program I/0 mode to console [/0 mode, The Program I/0 escape seguence is a
Control=P("F),

NOTE
Control=P is not recoanized if the console power

switch is in the 'REMOTE DISABLE® or ‘LOCAL
DISABLE* position,

Digital Equipment Corporation CCMPANY CONEFIDENTIAL Page 286
‘II CONSOLE FUNCTIONAL SPECIFICATION

7.2 Operating System communication with console load device

This section was condensed from the 11/78¢ console spec, and does not
really reflect now a TUSE would be used, Once the TUS3 interface is clearer,
this section will pe updated to reflect it’s functionality,

The operating system (¢S) must ce able to read and write tne console
subesystem’s load device (TUSB, Floppy dise, etc,) To acnieve tnis
functionality, the tollowing set of commands will be sugported oy tne console
software?

A, write Sector = CS supplies track, sector, and 128 bytes of data,.
console returns status upon completion cf write,

B, Read Sector = 0S supplies track and sector, console returns 128 bpytes
of ‘data, and status of Read operation,

Co Read Status = Console returns load device status

D, Wwrite sector with aeleted data mark = (S suppllies track and sector.
(no data required), Console returns status upon completion of the
write, . .

E. Cancel Function = Console aborts current load devicefunction,
The following functions will not pe directly available to tne Q§:
Empty Silo, Fill Silo, Read error reqgister, initialize,

While the 0S5 initiated load device functions are in proaress, operator terminal
1/0 is not disabled, Terminal I/C may be interspersed with load qevice 1/0,

Once a Function is initiated, no other locad device commands will »e 1issued by
the O0S until the function 1is complete, The only exception {s the command
fCancel Function’, which may be issued at any time,

The functions described in thls document will only te available to the 0S when
the console is in “pProgram I/0°® mocde, (i,e., the console terminal is peing useqd
as the system operator”s terminal,)

NQTE

In the following protocols, two nardvare
side=effects are implied:

1, tach time the 0S loads the "Transmit Buffer” (TXDB), the “iX Reaoy’ oit
in the ‘Transmit Status Register” (TXCS8), is automatically cleared,
*TXDB’ is only loaded by the 0S, and only «nhen *TX Ready’ is set, *TX
Ready’ 1is explicitly set by the console when the console is reaay fo
accept another transfer tnru °TXDB’,

Digital Equipment Corporation COMPANY CONFIDENTIAL , Fage 27
‘11 CONSOLE FUNCTIONAL SPECIFICATION

A,

B

2,

Each time the 0S reads the fReceiver Buffer” (RXDB), the *’X DONE® oplit
in the fReceiver Status Register’ (RXC3) will automatically clear,
RXDB is only read by the 03, and only when ‘KX DONE®’ is set, fRA
DONE®” is explicitly set bv the console each time the console has loaded
RXDB® witnh a character for the 0S8,

7.1 Load Device Function Protocol

Write Sector/Write Deleted Data Sector

1.

2,
3.
4,
S.
6
T

8.

10,

i1,

12,

the 0S puts *write sector’ or ’write=~deleted~data sector” command into .
*TXDB?’,

Console takes wrlte command, and sets “TX keady’ in ‘TX(CS’,

The 08 puts a "Sector #” into "TXDB’,

console takes sector # and sets ’‘TX Ready’,

The 0S puts a ‘Track #° into °TXDB’,

Console takes track # and sets ‘TX Ready’,

The 0S puts a byte of data into *TXDB”,

console accepts a byte 0f data and sets *TX rReady’, Steps 7 & 8 are -
done 128 times ¢for write sector, Steps 7 & 8 are skipped for write
deleted data sector,

console initiates Load Device write,

Wwrite completes,

Console sends ‘Function Complete’ message, The 'Function. Comnlete’
message conslsts of loading RXDB Bits 8-<l11 with a select code of “2°,

and BRits @«7 with the load device status bvte, (see Sec 6,5,3 for a
definition of the status byte)

The 0s receives the *Function Complete” message,

Read Sector

1,
2,

3,

The OS puts "Read Sector’” command into TXDb,
console takes read command, anha sets ’TX Ready’ in TXCS,

Tne 0S puts a sector ¢ into TXDB,

Digital Equipment Corporation COMPANY CONFIDENTIAL Pa

fle]
]
N
&

‘CII CONSOLE FUNCTIONAL SPECIFICATION

Co

D,

4,
5.
6,
7e
8.4

9.

14,
11,
12,

Console takes sector # and sets °TX Ready’,

The 0S puts a track s into TXDB,

Cconsole takes track # aﬁd sets °TX Ready”’,

console initiates read,

Read completes,

Console sends ‘Function Complete’ message, The ‘Function (Complete’
message consists o0f a select code o0f "2° in Bits 8=11 of KXPR, and a
Status Byte in Bits ¢U=7 of RXDR, (see Sec, 6,5.3 for sStatus FEyte
definition,)

The 0S receives ’"Function Complete”’,

Console puts one byte of data in RXD®, and sets “RX pone’,

The OS accepts one byte of data from RxDH,

Steps 11 and 12 are done 128 times, wnen the 1238th bvte is accepted By
the 0S, the read is complete,

NOTE

If a load deviceerror occurs on step &%, steps 11
and 12 will be skippea,

Read Status

Se

The 0S5 puts *Read Status” command in TXD8,

Console takes ‘Read Status’ command, and sets °‘TX Ready’ 1in
TXCS,

Console gets Status from last load device function performed,
Console puts “‘Function Complete’, with the Status, into
‘RXDB* and sets *RX Done’, (see Sec, 6,5.,3 for Status
definition)

The 0S reads the load device status,

Terminate Function

1.
2,

The 0S puts “Cancel Function’ command in TiDR.

Console takes “Cancel Function?’,

Digital Equipment Corporation COMPANY CONFIDENTIAL FPage
511 CONSOLE FUNCTIONAL SPECIFICATION :
3. Console terminates Function in progress, 1f any.

4, Console sets °TX Ready”’ in TXCs.

7.2 Miscellaneous Console Compunications

The console software will support certain additional functional
communications from the QOperating System : -

Software Communication Codes

1) warm Restart Boot Command = The console will boot tne
vaxX 11/784,

2) Clear warm=3tart and Cold-3tart flags = The operating
system issues these codes when the ¢S nas
restarted/rebooted successfully, The c¢console clears
the assoctiated flags.,

NOTE
The ‘cold’ and *warm’ restart flags are used

by the console to prevent intinite loops when
A warm restart results in a CPU error halt,

29

Digital Equipment Corporation COMPANY CONFIDENTIAL page 3¢
iSClI CONSOLE FUNCTIONAL SPECIFICATION

7.3 Communication Register Formats & Select Codes
TXDB

31 24 16 15 14 13 12 11 8 7 7

1

l z * z »
! MBZ ! MBZ ! MBZ ! ! !
! { ! 4 ! !
! !
! 18
Select Data
Field Field
RXDB
31 24 . 16 15 14 13 12 11 8 7 7]
! ! ! [! !
! MBZ ! MBZ ! Used by ! H !
! ! ! LL=11 ! H !
! !
! i
select pata
Fiela Fleld

Select Field Values (in Hex)

Select Code Device Datae Fleld values
9 Operator®s Terminal © thru 7F ! ASCII Data
1 Prive @ (Data) 2 thru FF ='Binary Data
2 Function Complete (Status) .
9 Prive @ (Ccmmand) ¢ = Read Sector
1 = write Sector
2 = Read Status
3 = Write Deleted Data sector
4 = Car
5 = Protocol error
F Misc, Communicaticen 1 = Softasare Done
2 = Bor
3 = Cle

Cl=

o

NOTE

Code 5 (Protccol Error), is sent by the
console when one o0f the following
occurs: ‘

1) Another load device command (except
for Cancel Function) is issued pv
the 08 betore a previous command 1s
completed,

2) The console gets a ‘Drive @ (DATA)C
when expecting a command,

7.3,1 Status Byte Definition

The Status bByte is used by the 0S to determine the success or failure
of a Read or Write operation, The Status Byte is sent to the 035 at
the completion of a Read, Write, or Read Status operation, The Select
code is always ‘Functien Complete® (code 2), The Status bit
assignments are as follows:

RXDB

- - - »

24 16 15 12 11 g 7 6 21 4
! ! ! !
{ MBZ ! MBZ ! MBZ
! { {

CODE ‘2° !

ceweeTmeeenceeawe |

B - B
- pe 0w
- - g
- Bem

= g o=
B P B =

§ o= 2= 0=

. o=

.
!
.
1
.
-

W Beam Bue
B Pur Sen Bom Aem

!
!
!
!
!
!
!

INI Dunge
' r 2 & N & B & N X J

DELETED DATA

z---.-------.-

ERROR

G S G e Nem B P Pem fun Pow Bw B
P g S Bm P gom

NOTE

The Status Bit assignments are identical
to those supplied by the Floopy
controller, excepting Bit 7. Bit 7
corresponds to Bit 15 of the Floppv’s
RXCS Register,

CRC ERR

PARITY ERKOQOR

Digital Equirment Corporation COMPANY CONFIDENTIAL , Page 32
ASCII CONSOQLE FUNCTIONAL SPECIFICATIOWN

8,9, ERRORS

All error messages have the following formats

?<ERROR NUMBER> [<SP><error message>]

Each distinct error message 1s assinged a numper wnich 1s the
same for all {implementations, Certain 1implementations may also
include an ootional enaglish message indicating tne nature of the
error, As w#ith the command abbreviations, error numpers are uniaque
and new errors must have numbers assigned to them by the architecture
group,

8.1 ERROR LIST

Errors are T,B,S,

8,2 1177498 CONSOLE ERRORS

1,0 SYNTACTIC ERRORS

?°<ASCII STRING>*” IS INCOMPLETE
The <ASCI1 STRING> 1s not a complete console
command,

?2°<ASCII STRING>” IS IaCORRECT
The <ASCII STRIANG> is not recognized as part of &
console command,

2FILE NAME ERR
A <FILENAME> given with a "LQAD® or *2° command
cannot pe translated to RADS@,

2,0 COMMAND GENERATED ERRCRS

2FILE NOT FOQUND
A <FILEMAME> given with a *LOAD" or ‘@° commana
LT, does not matecn anvy file on the current Floppey
disc. This error c¢an also te generated by a
‘HELP® or °BOOT’ command if the nelp file or ooot
file is missing from the rlopPpvy.

Digital Equipment Corporation COMPANY CONFIDENTIAL
‘MMAND GENERATED ERRQRS

2CAN*T FIND MICMON,SYS
Genersted when a “TEST’ command is issued and the
Micro-diagnostic monitor file is missing from the
current Floppy.

2CAN'T FIND WCSMON,SYS
Generated by a ‘WCSs* command when tne
controle-store depugger file s mwmissing from the
current Floppy,

2NQ CPU RESPONSE
The console timed out while waiting for a response
from a STAR CPU microe=routine,

7CPU NUT IN CONSOLE WAIT LOOP, COMMAND ABORTED
A conscle command that requires the assistance of
the STAR -CPU was issued when the CPU is not in the
console service loop,

?CPU CLOCK STOPPED, COMMAND ABRORTED
A console command that requires the CPU clock to
be running was issued with the clock stoppes,

2IND=COM ERR
An indirect command file error was detected, This
error is generated 1fg;

1) An indirect command line exceeds 8v
characters,

2) An indirect command line does not end witn
<CARRIAGE-RETURN> <LINE FEED>,

?CHM ERR .
A change=mode instruction was attempted from
the interrurt stack,

INT PENDING
This 1s not actually an error, but 1indicates
that an error was pending at the time that a
console=requested halt was nerformed,

3,2 MICROC=ROUTINE ERRORS

The conscle uses various micro~code routines in the STAR CPU’s control
store to perform c¢onsole functions, The following errors are
generated by micro=routine failyres:

?MEM=MAN FAULT, CODEsXX

A virtual examine or deposit caused anr error 1in-

the memory management micro=routire, ‘Xi° is s
one byte error code supplied by the memory

rage 33

Digital Equipment Corporation COMPANY CONFIbENIIAL
‘CRO ROUTINE ERRORS

management routine, See *Star machine
Check/Fault/Halt Spec”’ by C. Mathis tor the
definition of the error codes,

TMICRO=MACHINE TIME OUT
Indicates that the VAX 11/78¢ micro=macnine nas
failed to strobe interrupts witnin the maximun
time period allowed,

TMIC=ERR QN CONSOLE FUNCTION
An unspecified error occured while servicing a2
consvle request, Referencing non=existent memory
will cause this error,

?INT=REG ERR
An error occured while referencing one of the STAK
CPU 1internal (processor) registers, sSpecifying a
register address that 1s too large will cause this
error,

TMICRO=ERROR, CODE=XX
An unreccganized micro=~error cccured, “XX* is the
one~-byte error code returned by the micro-routine,

CPU FAULT GENERATED ERROR MESSAGES

2INT=STACK INVALID
The STAR CPU interruypt stack was marked invalid.

7CPU DGUBLE=ERR HALT
The STAR CPU has done a *Douyble Error Halt’,

?ILL I/E VECTCR
An 1liegal Interrupt/exception vector ~Aas
encountered by the STaAR CPU,

?NQ USR wCS
An Interrupt/gExcection vector to aCS was
encountered, and no W(CS exists,

NGTE

See *STAR sMachine Check/Fault/halt
Spec”’, C. Matnis, for further
intormation on these errors,

MICRO=MACHINE TIME~QUT
Indicates that the VAX 11/78¢ micro=macnine nas
falled to strobe interrupts within the maximunm

Fage 34

Digital Equipment Corporation COMPANY CONFIDENTIAL
‘ FAULT GENERATED ERRQR MESSAGES

time period allowed,

5,8 MESSAGES GENERATED BY FLOPFY ERROURS

FLOPPY ERROR, CODE=X

The consolie Floppy driver detected an error. b &4
i{s an error code with the following meaning: (X~
is always In HEX),

CODE ¥ ~Floppy hardware error, '(CRC. Parity, or a
Floppy Firmware cetected error),

CODE 1 =An “Opren” failled ¢to tind tne file
specified,

CODE 2 =The Floppy driver queue 1s tull,

CODE 3 =A Floppv sector was referenced tnat is out
of the legal range of sector nymbers,

TFLOPPY NOT READY

The console floppy drive falled to pecome ready
wnile booting,

ZFLOPPY ERROR ON BOQOT

A console floppy error was detected while
attempting a console poot,

?NQ BOOT ON FLOPPY

Tne console attempted to boot from a £lopoy that
does neot contain a vallc poot block,

6,9 MESSAGES RELATING TO VERSION COMPATIBILITY

?

Remote ACCESS NOT SUPPQRTED
Printed when the console mnode switch enters a
*rRemote® position, and remote sottware support is
not included in the ce¢onsole,

WARNING = WCS EPLA VYERSION MISMATCH
The microcode In WCS is not compatible with FPLA,
This message {is printed on eacnhn I3F start or
continue, but no other actien 1s taken Dby the
console,

FATAL « WCS RCS VERSION MISHATCH ,
The microcode in PCS is not compatiple with that
* in WCs, ISP start and continue are disabled by
the console,

Fage 35

Digital Equipment Corporation COMPANY CONFIUENTIAL
‘NSOLE‘.-GENERATED ERRQORS

7«9 CONSQLE«GENERATED ERRORS

? TRAP = 4 , RESTARTING CONSOLE

The console took a time=out <trap, Console

restart,

? UNEXPECTED TRAP
Tne console trapped to an unuseda vector,

Control=C is typed,
7 GO=BLOCKED

Console’s terminal output queue 1is
console will repoot,

console
reboots on insertion of console €floppvs

blocked

Digital Equipment Corporation COMPANY CONFIDENTIAL _ : Page 37
LSONSOLE=GENERATED ERRORS

APPENDIX A

LIST OF MACHINES AND THEIR COwMAwU SETS

This is T.R.S,

Section 6 SOFTWARE ISSUES

Map Register Bit 15 incorporated in the high word of
Unibus Mapping Registers to perform a cache Bypass is
not implemented in the 11/68 since it is unnecessary.
All Unibus references perform direct accesses to memory
and bypasses cache on the 11/68.

All trap related functions in the Memory Management has
been eliminated. We found no one who finds it useful.

The System I/D register 17 777 764 is not implemented
since its function is to be performed by the new in-
struction MFPT.

System Size Register is not implemented since memory
sizing is to be performed by all operating systems.
This results in all non-existant memory traps (11/70
Vector 114) to perform TIMEOUT traps to Vector 4
(consistent with all other PDP-11's with exception of
11/70/74) with appropriate bits set in the CPU Error
Register.

The RH68 is compatible with operation of the RH70 with
the exception of bus parity on the internal bus (PPBI).

The 11/68 implements write buffering on CPU writes. Con-

trol is provided through MMR3 bit <6> for operations

which require synchronization between write operations and
processor operations. See full description of the operation
of write buffering in the description of MMR3 Bit <6>.

Format of bits contained in Error and Diagnostic Registers
reflect 11/68 processor specific functions. These include
Cache Control, Cache/Memory System Error, Cache/Memory
Maintenance Registers.

11/68

	001
	002
	1_1-01
	1_2-01
	1_2-02
	1_2-03
	2_1-01
	2_1-02
	2_1-03
	2_1-04
	2_1-05
	2_1-06
	2_1-07
	2_1-08
	2_1-09
	2_1-10
	2_1-11
	2_1-12
	2_1-13
	2_1-14
	2_1-15
	2_1-16
	2_1-17
	2_1-18
	2_1-19
	2_1-20
	2_1-21
	2_1-22
	2_1-23
	2_1-24
	2_1-25
	2_1-26
	2_1-27
	2_1-28
	2_1-29
	2_1-30
	2_1-31
	2_1-32
	2_1-33
	2_1-34
	2_1-35
	2_2-01
	2_2-02
	2_2-03
	2_3-01
	2_3-02
	2_3-03
	2_3-04
	2_3-05
	2_4-01
	2_4-02
	2_4-03
	2_4-04
	2_4-05
	2_4-06
	2_4-07
	2_4-08
	2_4-09
	2_4-10
	2_4-11
	2_4-12
	2_4-13
	2_4-14
	2_5-01
	2_5-02
	2_5-03
	2_5-04
	2_5-05
	2_5-06
	2_5-07
	2_5-08
	2_5-09
	2_5-10
	3_1-01
	3_1-02
	3_1-03
	3_1-04
	3_1-05
	3_1-06
	3_1-07
	3_1-08
	3_1-09
	3_1-10
	3_1-11
	3_1-12
	3_1-13
	3_1-14
	3_1-15
	3_1-16
	3_1-17
	3_1-18
	3_1-19
	3_1-20
	3_1-21
	3_1-22
	3_1-23
	3_1-24
	3_1-25
	3_1-26
	3_1-27
	3_1-28
	3_1-29
	3_1-30
	3_1-31
	3_1-32
	5_1-01
	5_1-02
	5_1-03
	5_1-04
	5_1-05
	5_1-06
	5_A-00
	5_A-01
	5_A-02
	5_A-03
	5_A-04
	5_A-05
	5_A-06
	5_A-07
	5_A-08
	5_A-09
	5_A-10
	5_A-11
	5_A-12
	5_A-13
	5_A-14
	5_A-15
	5_A-16
	5_A-17
	5_A-18
	5_A-19
	5_A-20
	5_A-21
	5_A-22
	5_A-23
	5_A-24
	5_A-25
	5_A-26
	5_A-27
	5_A-28
	5_A-29
	5_A-30
	5_A-31
	5_A-32
	5_A-33
	5_A-34
	5_A-35
	5_A-36
	5_A-37
	6_1-01

